LIPID PROFILE AND GENETIC MARKERS ASSOCIATED WITH THE LEVEL OF OXIDIzED LOW DENSITY LIPOPROTEIDES
https://doi.org/10.15829/1560-4071-2017-10-49-54
Abstract
Aim. To assess biochemical and genetic markers associated with the level of oxidized low density lipoproteides (oxLDL).
Material and methods. Patients with various cardiovascular risk according to the SCORE scale were included in this study. Biochemical parameters were measured in blood serum with automatic analyzer Architect C8000 (Abbott, USA). OxLDL level was measured with the hard-phase immune-enzyme assay Oxidized LDL ELIsA (Mercodia, sweden). Genotyping was performed via the Cardio-MetaboChip microarrays (Illumina, USA). Seventeen single-nucleotide polymorphisms (SNP) of the APOB gene were included into analysis: rs676210, rs1042034, rs6728178, rs6754295, rs673548, rs6711016, rs11902417, rs10184054, rs6544366, rs4564803, rs7557067, rs2678379, rs533617, rs679899, rs1801695, rs1367117, rs1042031. The association study between SNP and oxLDL level was performed by the ROC-analysis. Based on results, the group of SNP was selected. According to this group, the total SCORE (TS) showing the level of genetic susceptibility to an increased oxLDL level was calculated.
Results. The present study included 717 patients ranging from 28 to 84 years old (with the median of 57), 204 men (28.45%). The oxLDL level varied from 21,03 to 163,72 U/dL (median 68,5) and correlated with the levels of total cholesterol (TC), triglycerides (TG), low density cholesterol (LDL-C), C-reactive protein (C-RP) and apolipoprotein B-100 (ApoB-100). The highest coefficients of correlations (p<10-10) were derived for APOB-100 and LDL-C (0,61 and 0,55, respectively). Fourteen SNPs of the APOB gene (rs6728178, rs11902417, rs6544366, rs4564803, rs6754295, rs7557067, rs1042034, rs2678379, rs676210, rs673548, rs679899, rs6711016, rs10184054, rs1042031) were significantly associated with the oxLDL. For the ts calculation we used only ten out of fourteen SNP because of the presence of linked SNP. Patients with ts ≤3 were referred to as those who had genetic susceptibility to the increased oxLDL level due to the protective role of most sNP. The regression study has revealed that patients with the same ApoB-100 level and with ts ≤3 had higher oxLDL level in average of 10 units than the patients with the ts>3 (p<10 ),and the patients with the same LDL-C level by 5 units, respectively (p<10 ).
Conclusion. The oxLDL level depends on the level of LDL-C and ApoB-100 in blood, as well as on the genetic susceptibility — a combination of the SNP of APOB gene.
About the Authors
E. Yu. KhlebusRussian Federation
А. N. Meshkov
Russian Federation
Moscow
V. Z. Lankin
Russian Federation
Moscow
А. A. Orlovsky
Russian Federation
А. V. Kiseleva
Russian Federation
Moscow
N. V. Shcherbakova
Russian Federation
А. А. Zharikova
Russian Federation
Moscow
А. I. Ershova
Russian Federation
Moscow
А. К. Tikhaze
Russian Federation
Moscow
Е. B. Yarovaya
Russian Federation
I. Е. Chazova
Moscow
S. А. Boytsov
Russian Federation
Competing Interests:
Moscow
References
1. Linton MF, Yancey PG, Davies ss, et al. The role of lipids and lipoproteins in atherosclerosis. In: De Groot LJ, Chrousos G, Dungan K, et al., ed. Endotext [Internet]. South Dartmouth (MA): MDtext.com, Inc, 2000-2015 Dec 24.
2. Lankin VZ, Tikhaze AK. Role of oxidative stress in the genesis of atherosclerosis and diabetes mellitus: A personal look back on 50 years of research. Curr Aging Sci, 2017; 10 (1): 18-25.
3. Lankin VZ, Tikhaze AK, Konovalova GG, et al. Aldehyde-dependent modification of low density lipoproteins. In: Handbook of Lipoprotein Research. NY: Nova Sci, 2010: 85-107.
4. Lankin VZ, Tikhaze AK, Kumskova EM. Macrophages actively accumulate malonyldialdehyde-modified but not enzymatically oxidized low density lipoprotein. Mol Cell Biochem, 2012; 365 (1-2): 93-8.
5. Huang Y, Hu Y, Mai W, et al. Plasma oxidized low-density lipoprotein is an independent risk factor in young patients with coronary artery disease. Dis Markers, 2011; 31 (5): 295-301.
6. Tsimikas S. Oxidized low-density lipoprotein biomarkers in atherosclerosis. Curr Atheroscler Rep, 2006; 8 (1): 55-61.
7. Johnston N, Jernberg T, Lagerqvist B, et al. Improved identification of patients with coronary artery disease by the use of new lipid and lipoprotein biomarkers. Am J Cardiol, 2006; 97 (5): 640-5.
8. Mäkelä KM, Seppälä I, Hernesniemi JA, et al. Genome-wide association study pinpoints a new functional apolipoprotein B variant influencing oxidized low-density lipoprotein levels but not cardiovascular events: AtheroRemo Consortium. Circ Cardiovasc Genet, 2013; 6 (1): 73-81.
9. Conroy RM, Pyörälä K, Fitzgerald AP, et al. Estimation of ten-year risk of fatal cardiovascular disease in europe: the SCORE project. Eur Heart J, 2003; 24 (11): 987-1003.
10. Fawcett T. ROC graphs: notes and practical considerations for data mining researchers. Technical report HPL-2003-4, Intelligent enterprise technologies Laboratory, HP Laboratories Palo Alto, 2003.
11. Urazalina sZh, titov VN, Vlasik tN, et al. Relationship between concentration of lipoproteinassociated secretory phospholipase A2 and markers of subclinical atherosclerotic lesion of the arterial wall in patients with low and moderate risk by SCORE scale. TerArkh, 2011; 83 (9): 29-35. (In Russ.) Уразалина С. Ж., Титов В. Н., Власик Т. Н. и др. Взаимосвязь концентрации ассоциированной с липопротеинами секреторной фосфолипазы А2 с маркерами субклинического атеросклеротического поражения артериальной стенки у пациентов с низким и средним риском по шкале sCORe. Терапевтический архив, 2011, 9: 29-35.
12. Urazalinas Zh, Rogoza AN, Balahonova TV, etal. Biochemical parameters and markers of preclinical pathology of carotid artery wall in patients with different levels of cardiovascular risk by the ESH/ESC scale (2003, 2007). Cardiovascular Тherapy and Prevention, 2011; 7: 74-80. (In Russ.) уразалинаС.Ж., РогозаА. Н., БалахоноваТ. В. идр. Биохимические показатели, маркеры доклинического поражения стенки сонных артерий у пациентов с различной степенью сердечно-сосудистого риска по шкале EОАГ/EОК (2003, 2007). Кардиоваскулярная терапия и профилактика 2011, 7: 74-80.
13. LankinV, KonovalovaG, TikhazeA, etal. The initiation of free radical peroxidation of lowdensity lipoproteins by glucose and its metabolite methylglyoxal: a common molecular mechanism of vascular wall injure in atherosclerosis and diabetes. Mol Cell Biochem, 2014; 395 (1-2): 241-52.
14. Lankin VZ, Tikhaze AK, Kapel’ko VI, et al. Mechanisms of oxidative modification of low density lipoproteins under conditions of oxidative and carbonyl stress. Biochemistry (Mosc), 2007; 72 (10): 1081-90.
15. Raniolo S,. Vindigni G, Biocca S. Cholesterol level regulates lectin-like oxidized low-density lipoprotein receptor-1 function. Biomedical Spectroscopy and Imaging, 2016; 5: s87-s99.
Supplementary files
![]() |
1. Таблица 1. Клиническая характеристика 717 пациентов, включенных в исследование (медиана (квартили), %). | |
Subject | ||
Type | Результаты исследования | |
Download
(10KB)
|
Indexing metadata ▾ |
![]() |
2. Таблица 2. Корреляция уровня ок-ЛНП с липидными показателями и СРБ. | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(9KB)
|
Indexing metadata ▾ |
![]() |
3. Таблица 3. Площадь под ROC-кривой (AUC), где в качестве непрерывной переменной был выбран уровень ок-ЛНП. Приведены статистически значимые результаты (p<0,05). | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(9KB)
|
Indexing metadata ▾ |
![]() |
4. Рисунок 1. Специфичность связывания нативных ЛНП (нЛНП), МДА-модифицированных ЛНП (МДА-ЛНП), глиоксаль-модифицированных ЛНП (G-ЛНП) и метилглиоксаль-модифицированных ЛНП (MG-ЛНП) с антителами mAb-4E6, используемыми в тест-наборах Mercodia Oxidized LDL ELI | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(46KB)
|
Indexing metadata ▾ |
![]() |
5. Рисунок 2. Содержание ок-ЛНП в зависимости от уровня ХС-ЛНП при отсутствии (СБ>3) (панель А) и наличии (СБ≤3) (панель В) генетической предрасположенности. Представлены линейные модели с 95 %-доверительными интервалами для линии регрессии. | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(93KB)
|
Indexing metadata ▾ |
![]() |
6. Рисунок 3. Содержание ок-ЛНП в зависимости от уровня АпоB-100 при отсутствии (СБ>3) (панель А) и наличии (СБ≤3) (панель В) генетической предрасположенности.¬¬ Представлены линейные модели с 95 %-доверительными интервалами для линии регрессии. | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(92KB)
|
Indexing metadata ▾ |
|
7. Направительное письмо | |
Subject | ||
Type | Исследовательские инструменты | |
View
(789KB)
|
Indexing metadata ▾ |
![]() |
8. Титульный лист | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(16KB)
|
Indexing metadata ▾ |
Review
For citations:
Khlebus E.Yu., Meshkov А.N., Lankin V.Z., Orlovsky А.A., Kiseleva А.V., Shcherbakova N.V., Zharikova А.А., Ershova А.I., Tikhaze А.К., Yarovaya Е.B., Chazova I.Е., Boytsov S.А. LIPID PROFILE AND GENETIC MARKERS ASSOCIATED WITH THE LEVEL OF OXIDIzED LOW DENSITY LIPOPROTEIDES. Russian Journal of Cardiology. 2017;(10):49-54. (In Russ.) https://doi.org/10.15829/1560-4071-2017-10-49-54