Preview

Russian Journal of Cardiology

Advanced search

STRUCTURAL VARIABLITY OF LEUCOCYTE GENOME AND ARTERIAL CELLS IN HUMAN ATHEROSCLEROSIS

https://doi.org/10.15829/1560-4071-2017-10-140-146

Abstract

The review is focused on current views on the structural variation of genome of somatic cells as components related to atherosclerosis. The original data presented on the variation spectrum of DNA areas copies in peripheral blood leucocytes and arterial cells in human atherosclerosis. The future directions sketched for the research on somatic cells genome variation with the aim for pathogenetics of multifactorial diseases.

About the Authors

А. A. Sleptsov
SRI of Medical Genetics, Tomsk National Research Center of RAS
Russian Federation
Tomsk


M. S. Nazarenko
SRI of Medical Genetics, Tomsk National Research Center of RAS; SRI of Complex Issues of Cardiovascular Diseases; Siberian State Medical University (SSMU)
Russian Federation


V. P. Puzyrev
SRI of Medical Genetics, Tomsk National Research Center of RAS; Siberian State Medical University (SSMU)
Russian Federation


References

1. Dzizinskiy AA, Puzyrev VP. Heredity and atherosclerosis. Nauka. Novosibirsk: 1977 p. 176. (In Russ.) Дзизинский АА, Пузырев ВП. Наследственность и атеросклероз. Наука. Новосибирск: 1977. с. 176.

2. Puzyrev VP, Nazarenko MS, Lebedev IN, et al. Phenomenon of paradominant inheritance in atherosclerosis. Meditsinskaya Genetika. 2014; 10: 41-8. (In Russ.) Пузырев ВП, Назаренко МС, Лебедев ИН, и др. Феномен парадоминантного наследования при атеросклерозе. Медицинская Генетика 2014, 10: 41-8.

3. Bjorkegren JLM, Kovacic JC, Dudley JT, et al. Genome-Wide Significant Loci: How Important Are They? J Am Coll Cardiol 2015; 65: 830-45.

4. Khera AV, Kathiresan S. Genetics of coronary artery disease: discovery, biology and clinical translation. Nat Rew Genet 2017, 18: 331-44.

5. Jacobs KB, Yeager M, Zhou W, et al. Detectable clonal mosaicism and its relationship to aging and cancer. Nat Genet 2012; 44: 651-8.

6. Laurie CC, Laurie CA, Rice K, et al. Detectable clonal mosaicism from birth to old age and its relationship to cancer. Nat Genet 2012; 44: 642-50.

7. Forsberg LA, Absher D, Dumanski JP. Non-heritable genetics of human disease: spotlight on post-zygotic genetic variation acquired during lifetime. J Med Genet 2013; 50: 1-10.

8. Forsberg LA, Gisselsson D, Dumanski JP. Mosaicism in health and disease clones picking up speed. Nat Rev Genet 2016; 18: 128-42.

9. Happle R. The McCune-Albright syndrome: a lethal gene surviving by mosaicism. Clin Genet 1986; 29: 321-4.

10. Happle R. Paradominant inheritance: A possible explanation for Becker’s pigmented hairy nevus. Eur J Dermatol 1991: 39-40.

11. Happle R. What is paradominant inheritance? J Med Genet 2009; 46: 648.

12. Limaye N, Boon LM, Vikkula M. From germline towards somatic mutations in the pathophysiology of vascular anomalies. Hum Mol Genet 2009; 18: R65-R74.

13. Gottlieb B, Chalifour LE, Mitmaker B, et al. BAK1 gene variation and abdominal aortic aneurysms. Hum Mutat 2009; 30: 1043-7.

14. Fessel JP, Loyd JE, Austin ED E. The Genetics of Pulmonary Arterial Hypertension. Circ Res 2014; 115: 189-202.

15. Gottlieb B, Beitel LK, Alvarado C, et al. Selection and mutation in the “new” genetics: An emerging hypothesis. Hum Genet 2010; 127: 491-501.

16. Gottlieb B, Beitel LK, Trifiro M. Changing genetic paradigms: creating next-generation genetic databases as tools to understand the emerging complexities of genotype/phenotype relationships. Hum Genomics 2014; 8: 9.

17. Benditt EP, Benditt JM. Evidence for a monoclonal origin of human atherosclerotic plaques. Proc Natl Acad Sci U S A 1973; 70: 1753-6.

18. De Flora S, Izzotti A. Mutagenesis and cardiovascular diseases. Molecular mechanisms, risk factors, and protective factors. Mutat Res Fundam Mol Mech Mutagen 2007; 621: 5-17.

19. Weakley SM, Jiang J, Kougias P, et al. Role of somatic mutations in vascular disease formation. Expert Rev Mol Diagn 2010; 10: 173-85.

20. Uryga A, Gray K, Bennett M. DNA Damage and Repair in Vascular Disease. Annu Rev Physiol 2016; 78: 45-66.

21. McCaffrey TA, Du B, Consigli S, et al. Genomic instability in the type II TGF-beta1 receptor gene in atherosclerotic and restenotic vascular cells. J Clin Invest 1997; 100: 2182-8.

22. Bobik A, Agrotis A, Kanellakis P, et al. Distinct patterns of transforming growth factorbeta isoform and receptor expression in human atherosclerotic lesions. Colocalization implicates TGF-beta in fibrofatty lesion development. Circulation 1999; 99: 2883–91.

23. Clark KJ, Cary NR, Grace AA, et al. Microsatellite mutation of type II transforming growth factor-beta receptor is rare in atherosclerotic plaques. Arterioscler Thromb Vasc Biol 2001; 21: 555-9.

24. Hatzistamou J, Kiaris H, Ergazaki M, et al. Loss of heterozygosity and microsatellite instability in human atherosclerotic plaques. Biochem Biophys Res Commun 1996; 225: 186-90.

25. Flouris GA, Arvanitis DA, Parissis JT, et al. Loss of heterozygosity in DNA mismatch repair genes in human atherosclerotic plaques. MolCell BiolResCommun 2000; 4: 62-5.

26. Miniati P, Sourvinos G, Michalodimitrakis M, et al. Loss of heterozygosity on chromosomes 1, 2, 8, 9 and 17 in cerebral atherosclerotic plaques. Int J Biol Markers 2001; 16: 167-71.

27. Grati FR, Ghilardi G, Sirchia SM, et al. Loss of heterozygosity of the NOS3 dinucleotide repeat marker in atherosclerotic plaques of human carotid arteries. Atherosclerosis 2001; 159: 261-7.

28. Arvanitis DA, Flouris GA, Spandidos DA. Genomic rearrangements on VCAM1, SELE, APEG1and AIF1 loci in atherosclerosis. J Cell Mol Med 2005; 9: 153-9.

29. Casalone R, Granata P, Minelli E, et al. Cytogenetic analysis reveals clonal proliferation of smooth muscle cells in atherosclerotic plaques. Hum Genet 1991; 87: 139-43.

30. Matturri L, Cazzullo A, Turconi P, et al. Chromosomal alterations in atherosclerotic plaques. Atherosclerosis 2001; 154: 755-61.

31. Tokunaga O, Satoh T, Yu S. Multinucleated variant endothelial cells (MVECs) have a greater capacity for LDL cholesterol uptake than typical mononuclear endothelial cells (TECs). J Atheroscler Thromb 2002; 9: 35-41.

32. Gray K, Kumar S, Figg N, et al. Effects of DNA damage in smooth muscle cells in atherosclerosis. Circ Res 2015; 116: 816-26.

33. Andreassi MG. DNA damage, vascular senescence and atherosclerosis. J Mol Med 2008; 86: 1033-43.

34. Gray K, Bennett M. Role of DNA damage in atherosclerosis Bystander or participant? Biochem Pharmacol 2011; 82: 693-700.

35. Laurie CCA, Laurie CCA, Rice K, et al. Detectable clonal mosaicism from birth to old age and its relationship to cancer. Nat Genet 2012; 44: 642-50.

36. O’Huallachain M, Karczewski KJ, Weissman SM, et al. Extensive genetic variation in somatic human tissues. Proc Natl Acad Sci U S A 2012; 109: 18018-23.

37. Pollex RL, Hegele RA. Copy Number Variation in the Human Genome and Its Implications for Cardiovascular Disease. Circulation 2007; 115: 3130-8.

38. Kathiresan S. Lp(a) Lipoprotein Redux — From Curious Molecule to Causal Risk Factor. N Engl J Med 2009; 361: 2573-4.

39. The Wellcome Trust Case Control Consortium. Genome-wide association study of CNVs in 16,000 cases of eight common diseases and 3,000 shared controls. Nature 2010; 464: 713-20.

40. Gancheva K, Postadjian A, Brazma D, et al. Copy Number Variants: Distribution in Patients with Coronary Atherosclerosis. Biotechnol Biotechnol Equip 2009; 23: 1095-100.

41. Shia W-C, Ku T-H, Tsao Y-M, et al. Genetic copy number variants in myocardial infarction patients with hyperlipidemia. BMC Genomics 2011; 12: S23.

42. Nazarenko MS, Sleptcov AA, Lebedev IN, et al. Genomic structural variations for cardiovascular and metabolic comorbidity. Sci Rep 2017; 7: 41268.

43. Ionita-Laza I, Rogers AJ, Lange C, et al. Genetic association analysis of copy-number variation (CNV) in human disease pathogenesis. Genomics 2009; 93: 22-6.

44. Feitosa MF, Wojczynski MK, North KE, et al. The ERLIN1-CHUK-CWF19L1 gene cluster influences liver fat deposition and hepatic inflammation in the NHLBI Family Heart Study. Atherosclerosis 2013; 228: 175-80.

45. Yoshida T, Kato K, Yokoi K, et al. Association of genetic variants with hemorrhagic stroke in Japanese individuals. Int J Mol Med 2010; 25: 649-56.

46. Browman DT, Resek ME, Zajchowski LD, et al. Erlin-1 and erlin-2 are novel members of the prohibitin family of proteins that define lipid-raft-like domains of the ER. J Cell Sci 2006; 119: 3149-60.

47. Huber MD, Vesely PW, Datta K, et al. Erlins restrict SREBP activation in the ER and regulate cellular cholesterol homeostasis. J Cell Biol 2013; 203: 427-36.

48. Sleptsov AA, Nazarenko MS, Barbarash OL, et al. The variety of ERLIN1 gen copies in patients with ischemic heart disease. Medical Genetics, 2016; 15: 42-4. (In Russ.) Слепцов АА, Назаренко МС, Барбараш ОЛ, et al. Вариации числа копий гена ERLIN1 у больных с ишемической болезнью сердца. Медицинская Генетика 2016; 15: 42-4.

49. Warren CR, Jaquish CE, Cowan CA. The NextGen Genetic Association Studies Consortium: A Foray into In Vitro Population Genetics. Cell Stem Cell 2017; 20: 431-3.


Supplementary files

1. Сопроводительное письмо к статье
Subject
Type Исследовательские инструменты
View (693KB)    
Indexing metadata ▾
2. Информация об авторах статьи
Subject
Type Исследовательские инструменты
Download (15KB)    
Indexing metadata ▾

Review

For citations:


Sleptsov А.A., Nazarenko M.S., Puzyrev V.P. STRUCTURAL VARIABLITY OF LEUCOCYTE GENOME AND ARTERIAL CELLS IN HUMAN ATHEROSCLEROSIS. Russian Journal of Cardiology. 2017;(10):140-146. (In Russ.) https://doi.org/10.15829/1560-4071-2017-10-140-146

Views: 840


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1560-4071 (Print)
ISSN 2618-7620 (Online)