СТРУКТУРНАЯ ВАРИАБЕЛЬНОСТЬ ГЕНОМА ЛЕЙКОЦИТОВ И КЛЕТОК АРТЕРИЙ ПРИ АТЕРОСКЛЕРОЗЕ У ЧЕЛОВЕКА
https://doi.org/10.15829/1560-4071-2017-10-140-146
Аннотация
В обзоре рассмотрены существующие представления о структурной изменчивости генома соматических клеток как компоненты, связанной с атеросклерозом. Приведены результаты собственного исследования о спектре вариаций числа копий участков ДНК в лейкоцитах периферической крови и клетках артерий при их атеросклеротическом поражении у человека. Обозначены перспективы исследования структурной вариабельности генома соматических клеток для понимания патогенетики многофакторных заболеваний человека.
Ключевые слова
Об авторах
А. А. СлепцовРоссия
Слепцов Алексей Анатольевич — младший научный сотрудник лаборатории популяционной генетики.
ТомскМ. С. Назаренко
Россия
Назаренко Мария Сергеевна — кандидат медицинских наук, руководитель лаборатории популяционной генетики.
SPIN-код 8137-3739
В. П. Пузырев
Россия
Пузырев Валерий Павлович — доктор медицинских наук, академик РАМН, профессор, научный руководитель, научный руководитель
Список литературы
1. Dzizinskiy AA, Puzyrev VP. Heredity and atherosclerosis. Nauka. Novosibirsk: 1977 p. 176. (In Russ.) Дзизинский АА, Пузырев ВП. Наследственность и атеросклероз. Наука. Новосибирск: 1977. с. 176.
2. Puzyrev VP, Nazarenko MS, Lebedev IN, et al. Phenomenon of paradominant inheritance in atherosclerosis. Meditsinskaya Genetika. 2014; 10: 41-8. (In Russ.) Пузырев ВП, Назаренко МС, Лебедев ИН, и др. Феномен парадоминантного наследования при атеросклерозе. Медицинская Генетика 2014, 10: 41-8.
3. Bjorkegren JLM, Kovacic JC, Dudley JT, et al. Genome-Wide Significant Loci: How Important Are They? J Am Coll Cardiol 2015; 65: 830-45.
4. Khera AV, Kathiresan S. Genetics of coronary artery disease: discovery, biology and clinical translation. Nat Rew Genet 2017, 18: 331-44.
5. Jacobs KB, Yeager M, Zhou W, et al. Detectable clonal mosaicism and its relationship to aging and cancer. Nat Genet 2012; 44: 651-8.
6. Laurie CC, Laurie CA, Rice K, et al. Detectable clonal mosaicism from birth to old age and its relationship to cancer. Nat Genet 2012; 44: 642-50.
7. Forsberg LA, Absher D, Dumanski JP. Non-heritable genetics of human disease: spotlight on post-zygotic genetic variation acquired during lifetime. J Med Genet 2013; 50: 1-10.
8. Forsberg LA, Gisselsson D, Dumanski JP. Mosaicism in health and disease clones picking up speed. Nat Rev Genet 2016; 18: 128-42.
9. Happle R. The McCune-Albright syndrome: a lethal gene surviving by mosaicism. Clin Genet 1986; 29: 321-4.
10. Happle R. Paradominant inheritance: A possible explanation for Becker’s pigmented hairy nevus. Eur J Dermatol 1991: 39-40.
11. Happle R. What is paradominant inheritance? J Med Genet 2009; 46: 648.
12. Limaye N, Boon LM, Vikkula M. From germline towards somatic mutations in the pathophysiology of vascular anomalies. Hum Mol Genet 2009; 18: R65-R74.
13. Gottlieb B, Chalifour LE, Mitmaker B, et al. BAK1 gene variation and abdominal aortic aneurysms. Hum Mutat 2009; 30: 1043-7.
14. Fessel JP, Loyd JE, Austin ED E. The Genetics of Pulmonary Arterial Hypertension. Circ Res 2014; 115: 189-202.
15. Gottlieb B, Beitel LK, Alvarado C, et al. Selection and mutation in the “new” genetics: An emerging hypothesis. Hum Genet 2010; 127: 491-501.
16. Gottlieb B, Beitel LK, Trifiro M. Changing genetic paradigms: creating next-generation genetic databases as tools to understand the emerging complexities of genotype/phenotype relationships. Hum Genomics 2014; 8: 9.
17. Benditt EP, Benditt JM. Evidence for a monoclonal origin of human atherosclerotic plaques. Proc Natl Acad Sci U S A 1973; 70: 1753-6.
18. De Flora S, Izzotti A. Mutagenesis and cardiovascular diseases. Molecular mechanisms, risk factors, and protective factors. Mutat Res Fundam Mol Mech Mutagen 2007; 621: 5-17.
19. Weakley SM, Jiang J, Kougias P, et al. Role of somatic mutations in vascular disease formation. Expert Rev Mol Diagn 2010; 10: 173-85.
20. Uryga A, Gray K, Bennett M. DNA Damage and Repair in Vascular Disease. Annu Rev Physiol 2016; 78: 45-66.
21. McCaffrey TA, Du B, Consigli S, et al. Genomic instability in the type II TGF-beta1 receptor gene in atherosclerotic and restenotic vascular cells. J Clin Invest 1997; 100: 2182-8.
22. Bobik A, Agrotis A, Kanellakis P, et al. Distinct patterns of transforming growth factorbeta isoform and receptor expression in human atherosclerotic lesions. Colocalization implicates TGF-beta in fibrofatty lesion development. Circulation 1999; 99: 2883–91.
23. Clark KJ, Cary NR, Grace AA, et al. Microsatellite mutation of type II transforming growth factor-beta receptor is rare in atherosclerotic plaques. Arterioscler Thromb Vasc Biol 2001; 21: 555-9.
24. Hatzistamou J, Kiaris H, Ergazaki M, et al. Loss of heterozygosity and microsatellite instability in human atherosclerotic plaques. Biochem Biophys Res Commun 1996; 225: 186-90.
25. Flouris GA, Arvanitis DA, Parissis JT, et al. Loss of heterozygosity in DNA mismatch repair genes in human atherosclerotic plaques. MolCell BiolResCommun 2000; 4: 62-5.
26. Miniati P, Sourvinos G, Michalodimitrakis M, et al. Loss of heterozygosity on chromosomes 1, 2, 8, 9 and 17 in cerebral atherosclerotic plaques. Int J Biol Markers 2001; 16: 167-71.
27. Grati FR, Ghilardi G, Sirchia SM, et al. Loss of heterozygosity of the NOS3 dinucleotide repeat marker in atherosclerotic plaques of human carotid arteries. Atherosclerosis 2001; 159: 261-7.
28. Arvanitis DA, Flouris GA, Spandidos DA. Genomic rearrangements on VCAM1, SELE, APEG1and AIF1 loci in atherosclerosis. J Cell Mol Med 2005; 9: 153-9.
29. Casalone R, Granata P, Minelli E, et al. Cytogenetic analysis reveals clonal proliferation of smooth muscle cells in atherosclerotic plaques. Hum Genet 1991; 87: 139-43.
30. Matturri L, Cazzullo A, Turconi P, et al. Chromosomal alterations in atherosclerotic plaques. Atherosclerosis 2001; 154: 755-61.
31. Tokunaga O, Satoh T, Yu S. Multinucleated variant endothelial cells (MVECs) have a greater capacity for LDL cholesterol uptake than typical mononuclear endothelial cells (TECs). J Atheroscler Thromb 2002; 9: 35-41.
32. Gray K, Kumar S, Figg N, et al. Effects of DNA damage in smooth muscle cells in atherosclerosis. Circ Res 2015; 116: 816-26.
33. Andreassi MG. DNA damage, vascular senescence and atherosclerosis. J Mol Med 2008; 86: 1033-43.
34. Gray K, Bennett M. Role of DNA damage in atherosclerosis Bystander or participant? Biochem Pharmacol 2011; 82: 693-700.
35. Laurie CCA, Laurie CCA, Rice K, et al. Detectable clonal mosaicism from birth to old age and its relationship to cancer. Nat Genet 2012; 44: 642-50.
36. O’Huallachain M, Karczewski KJ, Weissman SM, et al. Extensive genetic variation in somatic human tissues. Proc Natl Acad Sci U S A 2012; 109: 18018-23.
37. Pollex RL, Hegele RA. Copy Number Variation in the Human Genome and Its Implications for Cardiovascular Disease. Circulation 2007; 115: 3130-8.
38. Kathiresan S. Lp(a) Lipoprotein Redux — From Curious Molecule to Causal Risk Factor. N Engl J Med 2009; 361: 2573-4.
39. The Wellcome Trust Case Control Consortium. Genome-wide association study of CNVs in 16,000 cases of eight common diseases and 3,000 shared controls. Nature 2010; 464: 713-20.
40. Gancheva K, Postadjian A, Brazma D, et al. Copy Number Variants: Distribution in Patients with Coronary Atherosclerosis. Biotechnol Biotechnol Equip 2009; 23: 1095-100.
41. Shia W-C, Ku T-H, Tsao Y-M, et al. Genetic copy number variants in myocardial infarction patients with hyperlipidemia. BMC Genomics 2011; 12: S23.
42. Nazarenko MS, Sleptcov AA, Lebedev IN, et al. Genomic structural variations for cardiovascular and metabolic comorbidity. Sci Rep 2017; 7: 41268.
43. Ionita-Laza I, Rogers AJ, Lange C, et al. Genetic association analysis of copy-number variation (CNV) in human disease pathogenesis. Genomics 2009; 93: 22-6.
44. Feitosa MF, Wojczynski MK, North KE, et al. The ERLIN1-CHUK-CWF19L1 gene cluster influences liver fat deposition and hepatic inflammation in the NHLBI Family Heart Study. Atherosclerosis 2013; 228: 175-80.
45. Yoshida T, Kato K, Yokoi K, et al. Association of genetic variants with hemorrhagic stroke in Japanese individuals. Int J Mol Med 2010; 25: 649-56.
46. Browman DT, Resek ME, Zajchowski LD, et al. Erlin-1 and erlin-2 are novel members of the prohibitin family of proteins that define lipid-raft-like domains of the ER. J Cell Sci 2006; 119: 3149-60.
47. Huber MD, Vesely PW, Datta K, et al. Erlins restrict SREBP activation in the ER and regulate cellular cholesterol homeostasis. J Cell Biol 2013; 203: 427-36.
48. Sleptsov AA, Nazarenko MS, Barbarash OL, et al. The variety of ERLIN1 gen copies in patients with ischemic heart disease. Medical Genetics, 2016; 15: 42-4. (In Russ.) Слепцов АА, Назаренко МС, Барбараш ОЛ, et al. Вариации числа копий гена ERLIN1 у больных с ишемической болезнью сердца. Медицинская Генетика 2016; 15: 42-4.
49. Warren CR, Jaquish CE, Cowan CA. The NextGen Genetic Association Studies Consortium: A Foray into In Vitro Population Genetics. Cell Stem Cell 2017; 20: 431-3.
Дополнительные файлы
|
1. Сопроводительное письмо к статье | |
Тема | ||
Тип | Исследовательские инструменты | |
Посмотреть
(693KB)
|
Метаданные ▾ |
![]() |
2. Информация об авторах статьи | |
Тема | ||
Тип | Исследовательские инструменты | |
Скачать
(15KB)
|
Метаданные ▾ |
Рецензия
Для цитирования:
Слепцов А.А., Назаренко М.С., Пузырев В.П. СТРУКТУРНАЯ ВАРИАБЕЛЬНОСТЬ ГЕНОМА ЛЕЙКОЦИТОВ И КЛЕТОК АРТЕРИЙ ПРИ АТЕРОСКЛЕРОЗЕ У ЧЕЛОВЕКА. Российский кардиологический журнал. 2017;(10):140-146. https://doi.org/10.15829/1560-4071-2017-10-140-146
For citation:
Sleptsov А.A., Nazarenko M.S., Puzyrev V.P. STRUCTURAL VARIABLITY OF LEUCOCYTE GENOME AND ARTERIAL CELLS IN HUMAN ATHEROSCLEROSIS. Russian Journal of Cardiology. 2017;(10):140-146. (In Russ.) https://doi.org/10.15829/1560-4071-2017-10-140-146