Thoracic aortic calcification in patients with resistant hypertension
https://doi.org/10.15829/1560-4071-2025-6226
EDN: TPGKMB
Abstract
Aim. To evaluate thoracic aortic calcification and parameters of 24-hour ambulatory blood pressure monitoring (ABPM) in patients with resistant hypertension (HTN).
Material and methods. The study included 138 patients diagnosed with resistant HTN. Based on ABPM (Schiller BR-102 plus), the patients were divided into groups of controlled (Group 1, n=68) and uncontrolled resistant HTN (Group 2, n=70). Thoracic aortic calcium score was determined using a 64-slice computed tomography system (Siemens, Germany).
Results. No significant differences were found between the groups in the key clinical and anthropometric characteristics. The Agatston calcium score ranged from 312 to 2738 and was higher in the group of uncontrolled HTN (p<0,00001). ROC analysis found that calcium score of 900 with a sensitivity of 71,4% and a specificity of 66,2% differentiates individuals with controlled and uncontrolled resistant HTN (AUC=0,791). According to ABPM, the most significant differences were obtained when comparing pulse pressure, 24-hour systolic blood pressure (BP) index, morning surge, and daytime systolic BP variability. Regardless of the effectiveness of antihypertensive therapy, the calcium score correlated positively with the variability of systolic BP, pulse BP, and morning surge, and negatively with the 24-hour systolic BP index, but the relationship strength was greater when the target BP was not reached.
Conclusion. In patients with resistant HTN without BP control, higher values of pulse pressure, morning surge, and systolic BP variability, and a decrease in the 24-hour systolic BP index were noted. The calcium index was higher in the group of patients with uncontrolled resistant HTN and was associated with the variability of systolic BP, pulse pressure, morning surge, and nocturnal systolic BP decrease.
About the Authors
L. A. KhaishevaRussian Federation
Rostov-on-Don
Competing Interests:
None
M. S. Litvinova
Russian Federation
Rostov-on-Don
Competing Interests:
None
J. A. Umugwaneza
France
Jouarre, Seine-et-Marne
Competing Interests:
None
K. A. Khaishev
Russian Federation
Rostov-on-Don
Competing Interests:
None
References
1. Yuan C, Ni L, Zhang C, et al. Vascular calcification: New insights into endothelial cells. Microvasc Res. 2021;134:104105. doi:10.1016/j.mvr.2020.104105.
2. Desai MY, Cremer PC, Schoenhagen P. Thoracic Aortic Calcification: Diagnostic, Prognostic, and Management Considerations. JACC Cardiovasc Imaging. 2018;11(7):1012-26. doi:10.1016/j.jcmg.2018.03.023.
3. Zhang Y, He D, Zhang W, et al. ACE Inhibitor Benefit to Kidney and Cardiovascular Outcomes for Patients with Non-Dialysis Chronic Kidney Disease Stages 3-5: A Network Meta-Analysis of Randomised Clinical Trials. Drugs. 2020;80(8):797-811. doi:10.1007/s40265-020-01290-3.
4. Poredos P, Poredos P, Jezovnik MK. Structure of Atherosclerotic Plaques in Different Vascular Territories: Clinical Relevance. Curr Vasc Pharmacol. 2018;16(2):125-9. doi:10.2174/1570161115666170227103125.
5. Pedrosa JF, Brant LCC, de Aquino SA, et al. Segmental Evaluation of Thoracic Aortic Calcium and Their Relations with Cardiovascular Risk Factors in the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil). Cells. 2021;10(5):1243. doi:10.3390/cells10051243.
6. Barbarash OL, Kashtalap VV, Shibanova IA, et al. Fundamental and practical aspects of coronary artery calcification. Russian Journal of Cardiology. 2020;25(3S):4005. (In Russ.) doi:10.15829/1560-4071-2020-4005.
7. Egshatyan LV, Mokrysheva NG. Ectopic calcification in chronic kidney disease. Рart 2. The methods of diagnostics and the effectiveness of therapy. Nephrology (Saint-Petersburg). 2018;22(2):50-8. (In Russ.) doi:10.24884/1561-6274-2018-22-2-50-58.
8. Tan W, Li X, Zheng S, et al. A Porcine Model of Heart Failure With Preserved Ejection Fraction Induced by Chronic Pressure Overload Characterized by Cardiac Fibrosis and Remodeling. Front Cardiovasc Med. 2021;8:677727. doi:10.3389/fcvm.2021.677727.
9. Jan YT, Tsai PS, Longenecker CT, et al. Thoracic Aortic Calcification and Pre-Clinical Hypertension by New 2017 ACC/AHA Hypertension Guidelines. Diagnostics (Basel). 2021; 11(6):1027. doi:10.3390/diagnostics11061027.
10. Qazi S, Chuang ML. Aortic arch calcification: A simple but powerful marker of subclinical cardiovascular disease. Lancet Reg Health West Pac. 2022;23:100500. doi:10.1016/j.lanwpc.2022.100500.
11. Youssef G, Guo M, McClelland RL, et al. Risk Factors for the Development and Progression of Thoracic Aorta Calcification: The Multi-Ethnic Study of Atherosclerosis. Acad Radiol. 2015;22(12):1536-45. doi:10.1016/j.acra.2015.08.017.
12. Chiriacò M, Pateras K, Virdis A, et al. Association between blood pressure variability, cardiovascular disease and mortality in type 2 diabetes: A systematic review and meta-analysis. Diabetes Obes Metab. 2019;21(12):2587-98. doi:10.1111/dom.13828.
13. Kobalava ZhD, Konradi AO, Nedogoda SV, et al. Arterial hypertension in adults. Clinical guidelines 2020. Russian Journal of Cardiology. 2020;25(3):3786. (In Russ.) doi:10.15829/1560-4071-2020-3-3786.
14. Kosmatova OV, Miagkova MA, Skripnikova IA. Effects of vitamin D and calcium on the cardiovascular system: safety issues. Russian Journal of Preventive Medicine. 2020;23(3):140-8. (In Russ.) doi:10.17116/profmed202023031140.
15. Lessmann N, de Jong PA, Celeng C, et al. Sex Differences in Coronary Artery and Thoracic Aorta Calcification and Their Association With Cardiovascular Mortality in Heavy Smokers. JACC Cardiovasc Imaging. 2019;12(9):1808-17. doi:10.1016/j.jcmg.2018.10.026.
16. Kälsch H, Mahabadi AA, Moebus S, et al. Association of progressive thoracic aortic calcification with future cardiovascular events and all-cause mortality: ability to improve risk prediction? Results of the Heinz Nixdorf Recall (HNR) study. Eur Heart J Cardiovasc Imaging. 2019;20(6):709-17. doi:10.1093/ehjci/jey173.
17. Craiem D, Alsac JM, Casciaro ME, et al. Association Between Thoracic Aorta Calcium and Thoracic Aorta Geometry in a Cohort of Asymptomatic Participants at Increased Cardiovascular Risk. Rev Esp Cardiol (Engl Ed). 2016;69(9):827-35. doi:10.1016/j.rec.2016.01.031.
18. Zhang X, Li Y, Yang P, et al. Trimethylamine-N-Oxide Promotes Vascular Calcification Through Activation of NLRP3 (Nucleotide-Binding Domain, Leucine-Rich-Containing Family, Pyrin Domain-Containing-3) Inflammasome and NF-κB (Nuclear Factor κB) Signals. Arterioscler Thromb Vasc Biol. 2020;40(3):751-65. doi:10.1161/ATVBAHA.119.313414.
19. Kuzmin OB, Buchneva NN, Zhezha VV, et al. Uncontrolled Arterial Hypertension: Kidney, Neurohormonal Imbalance, and Approaches to Antihypertensive Drug Therapy. Kardiologiia. 2019;59(12):64-71. (In Russ.) doi:10.18087/cardio.2019.12.n547.
20. Zhao JV, Schooling CM. Using Mendelian randomization study to assess the renal effects of antihypertensive drugs. BMC Med. 2021;19(1):79. doi:10.1186/s12916-021-01951-4.
21. Adar A, Onalan O, Cakan F, et al. Aortic Arch Calcification on Routine Chest Radiography is Strongly and Independently Associated with Non-Dipper Blood Pressure Pattern. Arq Bras Cardiol. 2020;114(1):109-17. doi:10.5935/abc.20190229.
22. Heffernan KS, Barreira TV. Association between pulse pressure and aortic calcification: Findings from the National Health and Nutrition Examination Survey 2013-2014. J Clin Hypertens (Greenwich). 2020;22(5):879-85. doi:10.1111/jch.13853.
23. Vasyuk YuA, Ivanova SV, Shkolnik EL, et al. Consensus of Russian experts on the evaluation of arterial stiffness in clinical practice. Cardiovascular Therapy and Prevention. 2016;15(2): 4-19. (In Russ.) doi:10.15829/1728-8800-2016-2-4-19.
24. Ata Korkmaz A, Akyüz AR. Aortic knob calcification and cardioankle vascular index in asymptomatic hypertensive patients. Blood Press Monit. 2017;22(1):8-11. doi:10.1097/MBP.0000000000000221.
25. Guo J, Fujiyoshi A, Willcox B, et al. Increased Aortic Calcification Is Associated With Arterial Stiffness Progression in Multiethnic Middle-Aged Men. Hypertension.2017;69(1):102-8. doi:10.1161/HYPERTENSIONAHA.116.08459.
26. Larina VN, Fedorova EV, Kulbachinskaya OM. Morning rise in blood pressure: a review of domestic and foreign literature. Medicine. 2019;3:66-72. (In Russ.) doi:10.24411/2071-5315-2019-12143.
27. Kıvrak A, Özbiçer S, Kalkan GY, et al. Morning blood pressure surge and arterial stiffness in newly diagnosed hypertensive patients. Blood Press. 2017;26(3):181-90. doi:10.1080/08037051.2017.1278678.
28. Boardman H, Lewandowski AJ, Lazdam M. Aortic stiffness and blood pressure variability in young people: a multimodality investigation of central and peripheral vasculature. J Hypertens. 2017;35(3):513-22. doi:10.1097/HJH.0000000000001192.
Supplementary files
- Patients with uncontrolled resistant hypertension have more pronounced thoracic aortic calcification compared to patients who have achieved the target blood pressure level.
- The calcium score correlates with individual parameters of 24-hour blood pressure monitoring, which may indicate the contribution of thoracic aortic calcification to resistant hypertension progression.
Review
For citations:
Khaisheva L.A., Litvinova M.S., Umugwaneza J.A., Khaishev K.A. Thoracic aortic calcification in patients with resistant hypertension. Russian Journal of Cardiology. 2025;30(7):6226. (In Russ.) https://doi.org/10.15829/1560-4071-2025-6226. EDN: TPGKMB