Preview

Российский кардиологический журнал

Расширенный поиск

Место электрокардиографии в диагностике кардиомиопатий и спортивного сердца

https://doi.org/10.15829/1560-4071-2020-4023

Содержание

Перейти к:

Аннотация

В обзоре освещены возможности электрокардиографии в диагностике наиболее часто встречающихся заболеваний миокарда неишемического генеза, ассоциированных с повышенным риском внезапной сердечной смерти, особенно в популяции молодых спортсменов.

Для цитирования:


Чумакова О.С., Исаева М.Ю., Королева О.С., Затейщиков Д.А. Место электрокардиографии в диагностике кардиомиопатий и спортивного сердца. Российский кардиологический журнал. 2020;25(3S):4023. https://doi.org/10.15829/1560-4071-2020-4023

For citation:


Chumakova O.S., Isaeva M.Yu., Koroleva O.S., Zateyshchikov D.A. Contribution of electrocardiography to the diagnosis of cardiomyopathies and athletic heart syndrome. Russian Journal of Cardiology. 2020;25(3S):4023. https://doi.org/10.15829/1560-4071-2020-4023

Электрокардиография (ЭКГ) остается самым до­ступным и хорошо воспроизводимым методом ис­следования сердца. Длительное время при заболева­ниях миокарда неишемического генеза изменения на ЭКГ определяли как неспецифические. Исследова­ния последних лет с применением современных тех­нологий, таких как магнитно-резонансная томогра­фия (МРТ) и генетический анализ, позволили значи­тельно продвинуться в понимании патологических процессов в миокарде и выделить специфические изменения на ЭКГ для некоторых из них. Привыч­ные для ишемической болезни сердца или артериаль­ной гипертензии (АГ) “рубцовые” и “ишемические” изменения на ЭКГ при кардиомиопатиях имеют другое происхождение и появляются вследствие на­рушений микроциркуляции, интерстициального фи­броза, беспорядочного расположения кардиомиоци- тов или их фиброзно-жирового замещения, а также асимметричной гипертрофии, меняющей направлен­ность оси QRS. Правильная интерпретация измене­ний на ЭКГ зачастую позволяет своевременно пред­положить истинный генез заболевания в рамках кон­кретного структурного фенотипа и задать правильный вектор для его подтверждения. В ряде случаев изме­нения на ЭКГ являются единственным фенотипиче­ским проявлением наследственной болезни сердца [1], что делает метод незаменимым при семейном скрининге.

У атлетов, чаще динамических видов спорта (вело­спорт, футбол, бег), длительные интенсивные физи­ческие нагрузки приводят к структурным и электри­ческим адаптационным изменениям, которые при­нято называть “спортивным сердцем” [2]. Эти из­менения в большинстве случаев доброкачественные, но иногда могут совпадать с признаками кардио- миопатий, являющихся ведущей причиной внезап­ной сердечной смерти (ВСС) молодых спортсменов [3]. Правильная интерпретация ЭКГ у лиц, активно занимающихся спортом, с одной стороны, может помочь “не пропустить” фатальное заболевание, а с другой — избежать неоправданной дисквалифика­ции [3][4].

Аритмогенная кардиомиопатия

Аритмогенная кардиомиопатия (АКМ), ранее определявшаяся как аритмогенная дисплазия только правого желудочка (ПЖ), является генетическим заболеванием миокарда ПЖ и/или левого (ЛЖ) желу­дочков, отличительный фенотипический признак которого — образование миокардиальных рубцов в виде фиброзного или фиброзно-жирового замещения кардиомиоцитов, которые служат субстратом для глобальной и/или локальной дисфункции миокарда и предрасполагают к фатальным желудочковым арит­миям [5]. Диагноз АКМ — собирательный и ставится по совокупности морфофункциональных и структур­ных изменений миокарда, выявленных при эхокардиографии (ЭхоКГ), МРТ, биопсии, ЭКГ покоя и суточ­ного мониторирования ЭКГ, а также с учетом семей­ного и генетического анализа.

На ЭКГ при АКМ выделяют критерии, специфич­ные для преимущественного вовлечения ПЖ или ЛЖ, которые подразделяют на большие и малые [5]. Так, инверсии зубца Т в правых грудных отведениях (V1-V3) у взрослых людей при отсутствии полной блокады правой ножки пучка Гиса (ПНПГ) являются большим критерием ПЖ-варианта АКМ. Распро­странение инверсий зубца Т до V4-V6 свидетель­ствует о значительной дилатации и дисфункции ПЖ (рис. 1). В случае наличия полной блокады ПНПГ такие инверсии становятся менее специфичными и относятся к малым критериям ПЖ-варианта АКМ. Также всегда следует исключать заболевания, кото­рые могут быть похожи на АКМ, такие как смещение сердца вследствие перикардиотомии или деформа­ции грудной клетки, перегрузка ПЖ объемом или давлением, саркоидоз сердца и миокардит [6].

 

Рис. 1. Больная 42 лет с бивентрикулярной АКМ, с преимущественным вовлече­нием ЛЖ. А. ЭКГ: низкий вольтаж QRS в стандартных и инверсии зубца Т в V1-V6 отведениях; частая желудочковая экстрасистолия с конфигурацией полной блокады ЛНПГ и верхней осью. Б. МРТ: расширение обоих желудочков, НМ ЛЖ.

 

Эпсилон-волна, ранее относившаяся к большим критериям АКМ, представляет собой воспроизводи­мый низкоамплитудный сигнал между окончанием комплекса QRS и началом зубца Т. За последние десять лет диагностическая ценность этого критерия была поставлена под сомнение из-за высокой вариа­бельности в его идентификации и интерпретации [7], и в обновленных критериях Падуа 2020г [5] эпсилон- волна отнесена к малому критерию ПЖ-варианта АКМ, так же как удлинение времени активации выводного отдела ПЖ (TAD, terminal activation delay) >55 мсек, представляющее собой интервал от пика зубца S до окончания QRS, включая R’ в V1-V3 при отсутствии полной блокады ПНПГ.

Низкий вольтаж QRS в стандартных отведениях (<5 мм) может свидетельствовать о вовлеченности ЛЖ при АКМ (рис. 1). Чувствительность этого крите­рия низкая (не более 30%), поэтому он считается малым для ЛЖ-варианта АКМ при отсутствии ожи­рения, эмфиземы или перикардиального выпота [5]. Также к малым критериям ЛЖ-варианта АКМ отне­сены инверсии зубца Т изолированно в боковых отведениях при отсутствии полной блокады левой ножки пучка Гиса (ЛНПГ) [5]. Изолированный ЛЖ- вариант АКМ фенотипически не отличим от дилатационной кардиомиопатии (ДКМП) и зачастую под­тверждается только генетическим анализом, выявля­ющим мутации в типичных для АКМ генах меж­клеточных контактов (десмосом).

Регистрация поздних потенциалов с помощью сигнал-усредненной ЭКГ не нашла широкого при­менения в практике и более не используется для диа­гностики АКМ.

Желудочковая аритмия с конфигурацией полной блокады ЛНПГ и нижней осью, что указывает на ее происхождение из выводного отдела ПЖ, является малым критерием, а без нижней оси (из других отде­лов ПЖ) — большим критерием ПЖ-варианта АКМ [5] (рис. 1). Желудочковая аритмия с конфигурацией полной блокады ПНПГ является малым критерием ЛЖ-варианта АКМ [5].

Сходные с АКМ изменения миокарда, такие как значительное расширение ПЖ, пограничное сниже­ние фракции выброса (ФВ) ПЖ и желудочковые аритмии, могут быть индуцированы регулярными физическими нагрузками у здоровых лиц [8][9]. К фи­зиологическим изменениям ПЖ на ЭКГ относят вольтажные критерии гипертрофии ПЖ, изолированную полную блокаду ПНПГ и отклонение электрической оси вправо. Высокочувствительная в отношении АКМ инверсия зубца Т в правых грудных отведениях теряет свою специфичность в популяции спортсме­нов динамических видов спорта из-за достаточно большой распространенности (до 4% в отведениях V1-V3 и до 10% только в V1-V2) [2]. По нашим неопу­бликованным данным на основании анализа 619 ЭКГ спортсменов динамических видов спорта, инверсии зубца Т в V1-V3 без каких-либо значимых структур­ных изменений сердца встречаются в 1,9% случаев (рис. 2). Тем не менее, на сегодняшний день у белых спортсменов любые инверсии зубца Т в двух смеж­ных отведениях, в т.ч. в V1-V3, расцениваются как патологические и требуют углубленного обследова­ния и последующего наблюдения. У чернокожих спорт­сменов такие инверсии, в особенности, с элевацией сегмента ST с точкой J >1 мм, переведены в ранг доброкачественных [10]. Помимо инверсий зубца Т, заподозрить АКМ у спортсменов можно при реги­страции желудочковых нарушений ритма и эпсилон- волн.

 

Рис. 2. А. Спортсмен 24 лет, пятиборье, бессимптомный, ЭхоКГ, МРТ сердца, суточное мониторирование ЭКГ патологии не выявили. ЭКГ: инверсии зубца Т в V1-V3 с предшествующей >1 мм элевацией ST в точке J. Б. Спортсменка 35 лет, велоспорт, бессимптомная, без структурной патологии сердца. ЭКГ: инверсии зубца Т в V1-V3, изолированное увеличение вольтажа QRS.

 

Гипертрофия ЛЖ

Гипертрофическая кардиомиопатия (ГКМП) — самая частая наследственная патология сердца. У 60% больных ГКМП обусловлена мутациями в генах саркомера, комплексе сократительных белков кардиомиоцитов. У 5-10% под маской (фенокопии) ГКМП скрываются более редкие болезни накопления (Фабри, Данон, РККЛ02-кардиомиопатия), инфильтративные (амилоидоз, саркоидоз), митохондриаль­ные, нейромышечные заболевания (атаксия Фридрейха), мальформации (синдром Нунан), эндокрин­ные кардиомиопатии. У оставшихся 30% больных причину ГКМП выяснить пока не удается [11]. В отличие от АКМ, критерии диагноза ГКМП только морфологические: утолщение миокарда ЛЖ у взрос­лых >15 мм (>13 мм при наличии родственника с ГКМП), которое не может быть объяснено другими состояниями, приводящими к перегрузке ЛЖ (АГ, аортальный стеноз) [12].

Изменения на ЭКГ, в основном, инверсии зубца Т или глубокие узкие (“кинжальные”) зубцы Q с поло­жительным зубцом Т в нижних и боковых отведе­ниях, регистрируются более чем у 90% больных с саркомерной ГКМП [13]. “Гигантские” (>10 мм) симме­тричные зубцы Т, присутствующие обычно диффузно во всех грудных отведениях, указывают на выражен­ную гипертрофию верхушечных сегментов ЛЖ [14] (рис. 3). Псевдоинфарктные комплексы QS в грудных отведениях и полные блокады НПГ встречаются при ГКМП нечасто и в основном после хирургической редукции межжелудочковой перегородки или при выраженном трансмуральном фиброзе на поздних стадиях заболевания [13]. Такие изменения более характерны для инфильтративных заболеваний [15][16] (рис. 4).

 

Рис. 3. Больной 34 лет с верхушечной формой семейной ГКМП. А. ЭКГ: “гигантские” инверсии зубца Т в V2-V6, вольтажные признаки гипертрофии ЛЖ. Б. ЭхоКГ: гипертрофия верхушечных сегментов ЛЖ с формой полости ЛЖ в виде “туз пик”.

 

 

Рис. 4. Больная 64 лет с семейным транстиретиновым амилоидозом сердца. А. ЭКГ: вольтаж QRS низкий в стандартных и “нормальный”, не соответствую­щий выраженности гипертрофии на ЭхоКГ, в грудных отведениях; регресс R в V1-V4. Б. ЭхоКГ: выраженная гипертрофия миокарда ЛЖ, расширение пред­сердий. В. Допплер-ЭхоКГ: рестриктивный тип диастолической дисфункции ЛЖ.

 

Сочетание выраженной гипертрофии ЛЖ по дан­ным визуальных методов исследования с нарушени­ями проводимости на ЭКГ всегда подозрительно в отношении фенокопий ГКМП. Так, укороченный интервал PQ должен наводить на мысль о болезнях накопления [17] или митохондриальные заболевания [1], а замедление AV-проведения позволяет думать об амилоидозе [15], саркоидозе [16] или более поздних стадиях болезней накопления и митохондриальных заболеваний [1][13][17].

У многих больных с ГКМП на ЭКГ регистриру­ются вольтажные критерии гипертрофии ЛЖ и только у 2% они не сопровождаются нарушениями реполя­ризации [18]. Если вольтаж выражен чрезмерно, то стоит заподозрить болезнь накопления [13]. Если же, напротив, вольтаж QRS снижен или “нормальный” при выраженной гипертрофии на ЭхоКГ (электроме­ханическое несоответствие), то следует заподозрить амилоидоз [15] (рис. 4).

У каждого 8-го больного с ГКМП регистрируется удлинение интервала QTс >480 мсек, а у каждого 2-го >450 мсек, что ассоциируется с риском ВСС и служит дополнительным аргументом для имплантации кардиовертера-дефибриллятора [13][19].

Около 5-10% больных с фенотипом ГКМП имеют либо нормальную ЭКГ, либо изолированное увеличе­ние вольтажа QRS. У таких больных болезнь дебюти­рует позже, симптомы выражены меньше и прогноз лучше [13][20].

У спортсменов физиологическая гипертрофия не превышает 14 мм у мужчин [21] и 12 мм у женщин [22], тем не менее она всегда подозрительна в отно­шении дебюта ГКМП. Одним из самых характерных ЭКГ-признаков “спортивного сердца” является вы­раженное увеличение вольтажа QRS, которое часто ошибочно описывают как “гипертрофию ЛЖ”. В от­личие от патологической гипертрофии на ЭКГ спорт­сменов нет сопутствующих нарушений реполяриза­ции, поэтому умеренное утолщение стенок ЛЖ на ЭхоКГ в сочетании с изолированным увеличением вольтажа QRS свидетельствуют о физиологическом ремоделировании миокарда, а нарушения реполяри­зации в виде инверсий зубца Т >1 мм более чем в 2 смежных нижних (II и aVF) и, особенно, боковых (I, aVL, V5 или V6) отведениях указывают на возмож­ную ГКМП [4].

Инверсии зубца Т в нижних и боковых отведениях регистрируются на ЭКГ спортсменов и в отсутствии структурных изменений сердца. Изолированные инверсии зубца Т в нижних отведениях встречаются у 2% белых и у 6% чернокожих здоровых спортсменов [13], что по частоте встречаемости значительно пре­вышает наследственные заболевания сердца. По нашим неопубликованным данным на основании анализа 1435 ЭКГ спортсменов различных видов спорта, изолированные инверсии зубца Т в нижних отведениях встречаются в 1% случаев. Инверсии зубца Т в боковых отведениях считаются наиболее неблагоприятными, т.к. могут быть первым призна­ком кардиомиопатии [23]. К изменениям, подозри­тельным в отношении ГКМП у спортсменов, также относят: патологические зубцы Q (>0,25 от последую­щего зубца R или >40 мсек по ширине), депрессии сегмента ST >0,5 мм в >2 смежных отведениях, пол­ную блокаду ЛНПГ, неспецифическое расширение QRS >140 мсек и частую желудочковую экстрасистолию [4].

Систолическая дисфункция ЛЖ

ДКМП — синдром, характеризующийся систоли­ческой дисфункцией и дилатацией ЛЖ, которые не могут быть объяснены ишемической болезнью серд­ца или состояниями, приводящими к перегрузке ЛЖ (АГ, клапанная и врожденная патология сердца). Систолическая дисфункция ЛЖ (ФВ <45%) без рас­ширения его полости с 2016г классифицируется как “гипокинетическая недилатационная кардиомиопатия” [24].

ДКМП является самой этиологически гетероген­ной кардиомиопатией. Около 40% случаев ДКМП относятся к наследственным вариантам [25], которые могут проявляться изолированным поражением серд­ца, в сочетании с нарушениями проводимости и не­компактным миокардом (НМ) или в рамках систем­ных мышечных заболеваний. Среди последних наи­более часто фенотип ДКМП встречается при дистрофинопатиях (Дюшена и Бекера), поясно-конечностных мышечных дистрофиях (ПКМД) и прогрес­сирующей мышечной дистрофии Эмери-Дрейфуса (МДЭД) [26]. Наследственные ДКМП возникают по причине мутаций в генах саркомера (титин), цито­скелета (дистрофин, десмин), клеточных мембран (ламин, ионные каналы) и органелл [25]. Приобре­тенные формы ДКМП развиваются вследствие инфекций, аутоиммунных заболеваний, токсическо­го (алкоголь, кокаин) или лекарственного (химио­терапия) поражения миокарда, дефицита микроэле­ментов, эндокринно-метаболических заболеваний и беременности [24]. Отдельно выделяют тахи-индуцированную кардиомиопатию — потенциально обра­тимое снижение систолической функции ЛЖ, разви­вающееся на фоне постоянной предсердной или желудочковой тахиаритмии [27]. Имеются данные, что больные с ненаследственными формами ДКМП имеют также генетический субстрат болезни [25][28][29][30].

Изменения на ЭКГ выявляются более чем у 80% больных с ДКМП [31]. Самым частым, но неспеци­фичным отклонением является полная блокада ЛНПГ, которая иногда предшествует структурным изменениям сердца. Следует отличать истинную пол­ную блокаду ЛНПГ от сочетания гипертрофии ЛЖ с блокадой передней ветви ЛНПГ. При полной бло­каде ЛНПГ QRS >140 мсек (130 мсек для женщин), имеется зазубрина в средней части QRS как минимум в двух из следующих отведений: V1, V2, V5, V6, I, aVL. Такая морфология ассоциирована с лучшими резуль­татами ресинхронизирующей терапии [32]. Полная блокада ПНПГ при ДКМП встречается нечасто и, как правило, ассоциируется с мутациями в гене дистрофина [31].

Некоторые формы ДКМП имеют специфические отклонения на ЭКГ. Так, снижение вольтажа зубца Р или синдром слабости синусового узла с “выключен­ным” предсердием (atrial standstill) характерны для МДЭД [24], а синусовая брадикардия с эпизодами остановки синусового узла — для ламинопатий [31]. AV-блокады ассоциированы с мутациями в генах ламина и Na-канала, МДЭД, десминопатиями и миотонической дистрофией [24][26][31], а из приобретен­ных форм ДКМП характерны для саркоидоза, болезни Чагаса, клещевого боррелиоза (болезни Лайма) и дифтерии [24][31][33]. Также при болезни Чагаса часто регистрируется полная блокада ПНПГ с блокадой передней ветви ЛНПГ [34].

“Рубцовые” изменения в нижних, задних и боко­вых отведениях характерны для дистрофинопатий, ПКМД и саркоидоза [1][24]. У носителей мутаций в гене дистрофина также может регистрироваться высокий вольтаж зубца R в V1-V2 вследствие транс­муральных рубцов в заднебоковой стенке ЛЖ [31].

Вольтажные признаки гипертрофии ЛЖ при фенотипе ДКМП подозрительны в отношении декомпенсированного гипертонического сердца или конеч­ной стадии ГКМП [35]. У значительной доли больных с ДКМП регистрируются инверсии зубца Т, которые, в отличие от ГКМП, менее глубокие, не связаны с вольтажными критериями гипертрофии ЛЖ и не являются специфичными [31]. Тем не менее, сочета­ние инверсий зубца Т изолированно в левых или во всех грудных отведениях с низким вольтажом QRS в стандартных отведениях подозрительно в отноше­нии изолированного ЛЖ-варианта или бивентрикулярной АКМ [24][31][35]. Интервал QT при ДКМП, как правило, не изменяется, за исключением его укорочения при первичном дефиците карнитина [36] или удлинения при токсическом действии антрациклина [31]. Как и при ГКМП, ~10% больных с фенотипом ДКМП имеют нормальную ЭКГ [35].

У каждого 10-го спортсмена динамических видов спорта развивается значительное расширение ЛЖ со снижением ФВ (<52%), что создает “серую зону” по ДКМП [21]. Такое ремоделирование ЛЖ в сочетании с выраженной брадикардией и/или значительным удлинением интервала PQ (до 400 мсек), которые ха­рактерны для “спортивного сердца”, затрудняет диф­ференциальный диагноз с ДКМП. Наличие у спорт­сменов нарушений AV-проводимости высоких степе­ней, полной блокады ЛНПГ, нарушений реполяри­зации в боковых отведениях, патологических зубцов Q или желудочковых нарушений ритма в сочетании со сниженной ФВ ЛЖ всегда подозрительны в отно­шении патологической кардиомиопатии [4].

Гипертрабекулярность/НМ ЛЖ

Синдром НМ характеризуется выраженной трабекулярностью ЛЖ с глубокими сообщающимися с по­лостью ЛЖ межтрабекулярными пространствами, и кли­нически ассоциирован с сердечной недостаточностью, желудочковыми аритмиями и системными тромбоэм­болиями [37]. Благодаря широкому распространению МРТ, морфологические критерии НМ стали выяв­ляться достаточно часто (до 15%) в общей популяции [38], что сделало очевидным необходимость диффе­ренцировать истинный синдром НМ, вызываемый мутациями в генах саркомера, цитоскелета, митохон­дрий, клеточных мембран и других [39], от доброка­чественной гипертрабекулярности ЛЖ. ЭКГ может помочь в этом дифференциальном диагнозе. Так, появление на ЭКГ синдрома ранней реполяризации желудочков переводит гипертрабекулярность ЛЖ в “серую зону” по НМ, а регистрация полной бло­кады ЛНПГ, патологических зубцов Q или инверсий зубца Т указывает на высокий риск патологического НМ [37].

В популяции спортсменов избыточная трабекулярность достаточно распространена вследствие повышенной преднагрузки на ЛЖ во время физи­ческой активности, которая демаскирует трабекулы и делает их более выраженными [40]. Этим же меха­низмом объясняют значимо большую распростра­ненность НМ среди больных с хронической ане­мией и беременных [41][42]. Большинство спорт­сменов с гипертрабекулярностью ЛЖ имеют до­брокачественное изолированное увеличение воль­тажа QRS или синдром ранней реполяризации желудочков. Тем не менее, у небольшой части (0,9%) регистрируются инверсии зубца Т и сниже­ние систолической функции ЛЖ, что следует трак­товать как патологию [43].

Заключение

Высокая вариабельность клинического течения кардиомиопатий затрудняет постановку точного диа­гноза и стратификацию риска ВСС. Отклонения от нормы на ЭКГ могут помочь предположить происхо­ждение структурных изменений миокарда неишеми­ческого генеза и тем самым сократить время до поста­новки диагноза, выделить больных с особо агрессив­ными генетическими формами, которым требуется установка имплантируемого кардиовертера-дефи- бриллятора, или своевременно начать специфиче­скую терапию. Среди большого количества бессим­птомных здоровых спортсменов ЭКГ позволяет выделять тех, кто требует более тщательного наблю­дения в связи с риском развития кардиомиопатии и ВСС. Повышение уровня знаний в области интер­претации ЭКГ при кардиомиопатиях позволит улуч­шить выявляемость, лечение и прогноз таких боль­ных. Сводные данные по специфическим измене­ниям на ЭКГ при кардиомиопатиях представлены в таблице 1.

 

Таблица 1

Специфические признаки кардиомиопатий на ЭКГ покоя

Фенотип

ЭКГ-изменения

Предположительный диагноз

Расширение/нарушение сократимости ПЖ

инверсии Т в V1-V3

большой критерий ПЖ-АКМ

 

инверсии Т в V1-V4(V6)

значительное вовлечение ПЖ

 

ε-волна в V1-V2

малый критерий ПЖ-АКМ

 

TAD >55 мсек в V1-V3

малый критерий ПЖ-АКМ

 

↓ QRS в стандартных отведениях

бивентрикулярная АКМ

 

инверсии Т в V4-V6/I, aVL

бивентрикулярная АКМ

Гипертрофия ЛЖ

укорочение PQ

Фабри, Данон, Помпе, PRKAG2, митохондриальные заболевания

 

AV-блокады

амилоидоз, поздняя стадия Фабри, Данон, острый миокардит

 

↑↑ вольтажа QRS

Данон, Помпе

 

↓ или “нормальный” вольтаж QRS

амилоидоз

 

резкое отклонение оси QRS вправо

синдром Нунан

Систолическая дисфункция ЛЖ

↓ Р/atrial standstill

МДЭД 1 и 2 тип

 

синусовая брадикардия

ламинопатия

 

укорочение PQ

DMD

 

AV-блокады

саркоидоз, ламинопатия, МДЭД, миотоническая дистрофия, десминопатия, болезнь Чагаса, дифтерия, клещевой боррелиоз

 

Q/QS в нижне-боковых отведениях

DMD, BMD, саркоидоз, ПКМД

 

↓ QRS

ЛЖ-АКМ

 

полная блокада ПНПГ

DMD, болезнь Чагаса (+ блокада передней ветви ЛНПГ)

 

инверсии Т в V1-V6

ЛЖ- или бивентрикулярная АКМ

Гипертрабекулярность ЛЖ

полная блокада ЛНПГ

синдром НМ

 

патологические Q

 

 

инверсии Т

 

Сокращения: АКМ — аритмогенная кардиомиопатия, ЛЖ — левый желудочек, ЛНПГ — левая ножка пучка Гиса, МДЭД — мышечная дистрофия Эмери-Дрейфуса, НМ — некомпактный миокард, ПЖ — правый желудочек, ПКМД — поясно-конечностная мышечная дистрофия, ПНПГ — правая ножка пучка Гиса, atrial standstill — “выключенное” предсердие, BMD (Becker muscular dystrophy) — мышечная дистрофия Бекера, DMD (Duchenne muscular dystrophy) — мышечная дистрофия Дюшена, TAD (terminal activation delay) — удлинение времени активации.

Список литературы

1. Rapezzi C, Arbustini E, Caforio AL, et al. Diagnostic work-up in cardiomyopathies: bridging the gap between clinical phenotypes and final diagnosis. A position statement from the ESC Working Group on Myocardial and Pericardial Diseases. Eur Heart J. 2013;34(19):1448-58. doi: 10.1093/eurheartj/ehs397.

2. Brosnan M, La Gerche A, Kalman J, et al. Comparison of frequency of significant electrocardiographic abnormalities in endurance versus nonendurance athletes. Am J Cardiol. 2014;113(9):1567-73. doi: 10.1016/j.amjcard.2014.01.438.

3. Corrado D, Basso C, Rizzoli G, et al. Does Sports Activity Enhance the Risk of Sudden Death in Adolescents and Young Adults? JACC. 2003;42(11):1959-63. doi: 10.1016/j.jacc.2003.03.002

4. Sharma S, Drezner JA, Baggish A, et al. International Recommendations for Electrocardiographic Interpretation in Athletes. J Am Coll Cardiol. 2017;69(8):1057-1075. doi: 10.1016/j.jacc.2017.01.015.

5. Corrado D, Marra MP, Zorzi A, et al. Diagnosis of arrhythmogenic cardiomyopathy: The Padua criteria. Int J Cardiol. 2020. doi: 10.1016/j.ijcard.2020.06.005.

6. Quarta G, Husain SI, Flett AS, et al. Arrhythmogenic right ventricular cardiomyopathy mimics: role of cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2013;15:16. doi: 10.1186/1532-429X-15-16.

7. Platonov PG, Calkins H, Hauer RN, et al. High interobserver variability in the assessment of epsilon waves: Implications for diagnosis of arrhythmogenic right ventricular cardiomyopathy/dysplasia. Heart Rhythm. 2016;13(1):208-16. doi: 10.1016/j.hrthm.2015.08.031.

8. La Gerche A, Claessen G, Dymarkowski S, et al. Exercise-induced right ventricular dysfunction is associated with ventricular arrhythmias in endurance athletes. Eur Heart J. 2015;36(30):1998-2010. doi: 10.1093/eurheartj/ehv202.

9. Zaidi A, Ghani S, Sharma R, et al. Physiological right ventricular adaptation in elite athletes of African and Afro-Caribbean origin. Circulation. 2013;127(17):1783-92. doi: 10.1161/CIRCULATIONAHA.112.000270.

10. Finocchiaro G, Papadakis M, Dhutia H, et al. Electrocardiographic differentiation between 'benign T-wave inversion' and arrhythmogenic right ventricular cardiomyopathy. Europace. 2019;21(2):332-338. doi: 10.1093/europace/euy179.

11. Seferovic PM, Polovina M, Bauersachs J, et al. Heart failure in cardiomyopathies: a position paper from the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail. 2019;21(5):553-576. doi: 10.1002/ejhf.1461.

12. Elliott PM, Anastasakis A, Borger MA, et al. 2014 ESC Guidelines on diagnosis and management of hypertrophic cardiomyopathy. Eur Heart J. 2014;35(39):2733-79. doi: 10.1093/eurheartj/ehu284.

13. Finocchiaro G, Sheikh N, Biagini E, et al. The electrocardiogram in the diagnosis and management of patients with hypertrophic cardiomyopathy. Heart Rhythm. 2020;17(1):142-151. doi: 10.1016/j.hrthm.2019.07.019.

14. Dumont CA, Monserrat L, Soler R, et al. Interpretation of electrocardiographic abnormalities in hypertrophic cardiomyopathy with cardiac magnetic resonance. Eur Heart J. 2006;27(14):1725-31. doi: 10.1093/eurheartj/ehl101.

15. Bart NK, Thomas L, Korczyk D, et al. Amyloid Cardiomyopathy. Heart Lung Circ. 2020;29(4):575-583. doi: 10.1016/j.hlc.2019.11.019.

16. Birnie DH, Nery PB, Ha AC, et al. Cardiac Sarcoidosis. J Am Coll Cardiol. 2016;68(4):411-21. doi: 10.1016/j.jacc.2016.03.605.

17. Lopez-Sainz A, Dominguez F, Lopes LR, et al. Clinical Features and Natural History of PRKAG2 Variant Cardiac Glycogenosis. J Am Coll Cardiol. 2020;76(2):186-197. doi: 10.1016/j.jacc.2020.05.029.

18. Calore C, Melacini P, Pelliccia A, et al. Prevalence and clinical meaning of isolated increase of QRS voltages in hypertrophic cardiomyopathy versus athlete's heart: relevance to athletic screening. Int J Cardiol. 2013;168(4):4494-7. doi: 10.1016/j.ijcard.2013.06.123.

19. Patel SI, Ackerman MJ, Shamoun FE, et al. QT prolongation and sudden cardiac death risk in hypertrophic cardiomyopathy. Acta Cardiol. 2019;74(1):53-58. doi: 10.1080/00015385.2018.1440905.

20. McLeod CJ, Ackerman MJ, Nishimura RA, et al. Outcome of patients with hypertrophic cardiomyopathy and a normal electrocardiogram. J Am Coll Cardiol. 2009;54(3):229-33. doi: 10.1016/j.jacc.2009.02.071.

21. Abergel E, Chatellier G, Hagege AA, et al. Serial left ventricular adaptations in world-class professional cyclists: implications for disease screening and follow-up. J Am Coll Cardiol. 2004;44(1):144-9. doi: 10.1016/j.jacc.2004.02.057.

22. Pelliccia A, Maron BJ, Culasso F, et al. Athlete's heart in women. Echocardiographic characterization of highly trained elite female athletes. JAMA. 1996;276(3):211-5. doi: 10.1001/jama.276.3.211.

23. Pelliccia A, Di Paolo FM, Quattrini FM, et al. Outcomes in athletes with marked ECG repolarization abnormalities. N Engl J Med. 2008;358(2):152-61. doi: 10.1056/NEJMoa060781.

24. Pinto YM, Elliott PM, Arbustini E, et al. Proposal for a revised definition of dilated cardiomyopathy, hypokinetic non-dilated cardiomyopathy, and its implications for clinical practice: a position statement of the ESC working group on myocardial and pericardial diseases. Eur Heart J. 2016;37(23):1850-8. doi: 10.1093/eurheartj/ehv727.

25. Lamounier Junior A, Ferrari F, Max R, et al. Importance of Genetic Testing in Dilated Cardiomyopathy: Applications and Challenges in Clinical Practice. Arq Bras Cardiol. 2019;113(2):274-281. doi: 10.5935/abc.20190144.

26. Arbustini E, Di Toro A, Giuliani L, et al. Cardiac Phenotypes in Hereditary Muscle Disorders: JACC State-of-the-Art Review. J Am Coll Cardiol. 2018;72(20):2485-2506. doi: 10.1016/j.jacc.2018.08.2182.

27. Martin CA, Lambiase PD. Pathophysiology, diagnosis and treatment of tachycardiomyopathy. Heart. 2017;103(19):1543-1552. doi: 10.1136/heartjnl-2016-310391.

28. Garcia-Pavia P, Kim Y, Restrepo-Cordoba MA, et al. Genetic Variants Associated With Cancer Therapy-Induced Cardiomyopathy. Circulation. 2019;140(1):31-41. doi: 10.1161/CIRCULATIONAHA.118.037934.

29. Ware JS, Li J, Mazaika E, et al. Shared Genetic Predisposition in Peripartum and Dilated Cardiomyopathies. N Engl J Med. 2016;374(3):233-41. doi: 10.1056/NEJMoa1505517.

30. Ware JS, Amor-Salamanca A, Tayal U, et al. Genetic Etiology for Alcohol-Induced Cardiac Toxicity. J Am Coll Cardiol. 2018;71(20):2293-2302. doi: 10.1016/j.jacc.2018.03.462.

31. Finocchiaro G, Merlo M, Sheikh N, et al. The electrocardiogram in the diagnosis and management of patients with dilated cardiomyopathy. Eur J Heart Fail. 2020. doi: 10.1002/ejhf.1815.

32. Strauss DG, Selvester RH, Wagner GS. Defining left bundle branch block in the era of cardiac resynchronization therapy. Am J Cardiol. 2011;107(6):927-34. doi: 10.1016/j.amjcard.2010.11.010.

33. Nery PB, Beanlands RS, Nair GM, et al. Atrioventricular block as the initial manifestation of cardiac sarcoidosis in middle-aged adults. J Cardiovasc Electrophysiol. 2014;25(8):875-881. doi: 10.1111/jce.12401.

34. Nunes MCP, Beaton A, Acquatella H, et al. Chagas Cardiomyopathy: An Update of Current Clinical Knowledge and Management: A Scientific Statement From the American Heart Association. Circulation. 2018;138(12):e169-e209. doi: 10.1161/CIR.0000000000000599.

35. Merlo M, Zaffalon D, Stolfo D, et al. ECG in dilated cardiomyopathy: specific findings and long-term prognostic significance. J Cardiovasc Med (Hagerstown). 2019;20(7):450-458. doi: 10.2459/JCM.0000000000000804.

36. Perin F, Rodriguez-Vazquez Del Rey MDM, Carreras-Blesa C, et al. Dilated Cardiomyopathy With Short QT Interval Suggests Primary Carnitine Deficiency. Rev Esp Cardiol (Engl Ed). 2018;71(12):1074-1075. doi: 10.1016/j.rec.2017.09.004.

37. Vergani V, Lazzeroni D, Peretto G. Bridging the gap between hypertrabeculation phenotype, noncompaction phenotype and left ventricular noncompaction cardiomyopathy. J Cardiovasc Med (Hagerstown). 2020;21(3):192-199. doi: 10.2459/JCM.0000000000000924.

38. Weir-McCall JR, Yeap PM, Papagiorcopulo C, et al. Left Ventricular Noncompaction: Anatomical Phenotype or Distinct Cardiomyopathy? J Am Coll Cardiol. 2016;68(20):2157-2165. doi: 10.1016/j.jacc.2016.08.054.

39. van Waning JI, Caliskan K, Hoedemaekers YM, et al. Genetics, Clinical Features, and Long-Term Outcome of Noncompaction Cardiomyopathy. J Am Coll Cardiol. 2018;71(7):711-722. doi: 10.1016/j.jacc.2017.12.019.

40. D'Ascenzi F, Pelliccia A, Natali BM, et al. Exercise-induced left-ventricular hypertrabeculation in athlete's heart. Int J Cardiol. 2015;181:320–322. doi: http://dx.doi.org/10.1016/j.ijcard.2014.11.203.

41. Gati S, Papadakis M, Papamichael ND, et al. Reversible de novo left ventricular trabeculations in pregnant women: implications for the diagnosis of left ventricular noncompaction in low-risk populations. Circulation. 2014;130(6):475-83. doi: 10.1161/CIRCULATIONAHA.114.008554.

42. Gati S, Papadakis M, Van Niekerk N, et al. Increased left ventricular trabeculation in individuals with sickle cell anaemia: physiology or pathology? Int J Cardiol. 2013;168(2):1658-60. doi: 10.1016/j.ijcard.2013.03.039.

43. Gati S, Chandra N, Bennett RL, et al. Increased left ventricular trabeculation in highly trained athletes: do we need more stringent criteria for the diagnosis of left ventricular non-compaction in athletes? Heart. 2013;99(7):506. doi: 10.1136/heartjnl- 2012-303418.


Об авторах

О. С. Чумакова
ФГБУ ДПО «Центральная государственная медицинская академия» УД Президента РФ; ФГБУ «ФНКЦ специализированных видов медицинской помощи и медицинских технологий ФМБА России»
Россия

доцент кафедры терапии, кардиологии и функцональной диагностики с курсом нефрологии, к.м.н.

Москва


Конфликт интересов:
Конфликт интересов не заявляется


М. Ю. Исаева
ФГБУ «ФНКЦ специализированных видов медицинской помощи и медицинских технологий ФМБА России»
Россия

врач-кардиолог, к.м.н.

Москва


Конфликт интересов: Конфликт интересов не заявляется


О. С. Королева
ФГБУ ДПО «Центральная государственная медицинская академия» УД Президента РФ
Россия

ассисент кафедры терапии, кардиологии и функциональной диагностики с курсом нефрологии, к.м.н.

Москва


Конфликт интересов: Конфликт интересов не заявляется


Д. А. Затейщиков
ФГБУ ДПО «Центральная государственная медицинская академия» УД Президента РФ; ФГБУ «ФНКЦ специализированных видов медицинской помощи и медицинских технологий ФМБА России»; ГБУЗ «Городская клиническая больница №51 ДЗ г. Москвы»
Россия

зав. кафедрой терапии, кардиологии и функциональной диагностики с курсом нефрологии, д.м.н., профессор 

Москва


Конфликт интересов: Конфликт интересов не заявляется


Дополнительные файлы

1. Направительное письмо
Тема
Тип Прочее
Скачать (17KB)    
Метаданные ▾
2. Информационный файл
Тема
Тип Прочее
Скачать (17KB)    
Метаданные ▾
3. Рисунки
Тема
Тип Данные
Скачать (12MB)    
Метаданные ▾

Рецензия

Для цитирования:


Чумакова О.С., Исаева М.Ю., Королева О.С., Затейщиков Д.А. Место электрокардиографии в диагностике кардиомиопатий и спортивного сердца. Российский кардиологический журнал. 2020;25(3S):4023. https://doi.org/10.15829/1560-4071-2020-4023

For citation:


Chumakova O.S., Isaeva M.Yu., Koroleva O.S., Zateyshchikov D.A. Contribution of electrocardiography to the diagnosis of cardiomyopathies and athletic heart syndrome. Russian Journal of Cardiology. 2020;25(3S):4023. https://doi.org/10.15829/1560-4071-2020-4023

Просмотров: 31226


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1560-4071 (Print)
ISSN 2618-7620 (Online)