PCSK9 inhibitors for in-hospital treatment of patients with acute coronary syndrome and severe lipid metabolism disorders
https://doi.org/10.15829/1560-4071-2020-4010
Abstract
Aim. To assess the efficacy and safety of PCSK9 inhibitor alirocumab as part of a combination lipid-lowering therapy in patients with acute coronary syndrome (ACS).
Material and methods. This prospective, open-label, single-center activetreatment study included 13 patients hospitalized due to ACS. The main inclusion criterion was nonachievement of target low-density lipoprotein cholesterol (LDL-C) values (<1,4 mmol/L) with high-intensity statin therapy prior to ACS. During the first 30 days after ACS, all patients received therapy with atorvastatin 40-80 mg/day or rosuvastatin 20-40 mg/day in combination with alirocumab 150 mg/ml (Praluent) administered by subcutaneous injection. Lipid and biochemical profiles were monitored. The first injection of the PCSK9 inhibitor was performed on days 3-5 of hospitalization, the second — after 2 weeks.
Results. On admission, the median LDL-C was 4,3 [3,5;5,3] mmol/L. A day after administration, there was a decrease in LDL-C by 41,9% (median 2,5 [1,8;3,2] mmol/L; p=0,001) without a negative effect on high-density lipoproteins (HDL-C) (median 1,2 [0,8;1,4] mmol/L; p=0,270). Before the next injection, LDL-C decreased by another 8% (median 2,3 [1,1;4,1] mmol/L). A day after the second injection, a decrease in LDL-C from the baseline values was 69,8% (median 1,3 [0,7;1,5] mmol/L; p=0,010). Strengthening lipid-lowering therapy with a PCSK9 inhibitor within 30 days after ACS did not lead to clinical and biochemical deterioration.
Conclusion. The use of subcutaneous 150-mg injections of alirocumab 2 times a week 30 days after ACS in patients who did not reach target LDL-C values with statin therapy, leads to a 69% decrease in LDL-C from baseline values and is safe.
About the Authors
O. L. BarbarashRussian Federation
Kemerovo
N. V. Fedorova
Russian Federation
Kemerovo
D. Yu. Sedykh
Russian Federation
Kemerovo
O. V. Gruzdeva
Russian Federation
Kemerovo
O. N. Khryachkova
Russian Federation
Kemerovo
V. V. Kashtalap
Russian Federation
Kemerovo
A. A. Filimonova
Russian Federation
Ryazan
References
1. Reiner Z, De Backer G, Fras Z, et al. Lipid lowering drug therapy in patients with coronary heart disease from 24 European countries — Findings from the EUROASPIRE IV survey. Atherosclerosis. 2016;(246):243-50. doi:10.1016/j.atherosclerosis.2016.01.018.
2. Barbarash OL, Sedykh DYu, Gorbunova EV. Key factors determining the risk of recurrent myocardial infarction. Russian Heart Journal. 2017;16(1):10-50. (In Russ.) doi:10.18087/rhj.2017.1.2280.
3. Mach F, Baigent C, Catapano A, et al. ESC Scientific Document Group. 2019 ESC/ EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Eur Heart J. 2020;41(1):111-88. doi:10.1093/eurheartj/ehz455.
4. Diagnosis and correction of lipid metabolism disorders in order to prevent and treat atherosclerosis. Russian recommendations, VII revision. Atherosclerosis and dyslipidemia. 2020;1(38):7-41. (In Russ.) doi:10.34687/2219-8202.JAD.2020.01.0002.
5. Barbarash OL, Karetnikova VN, Kashtalap VV. The patient after myocardial infarction: how to reduce a risk of recurrent ischemic event? Cardiosomatics. 2015;6(2):12-9. (In Russ.)
6. Ibanez B, James S, Agewall S, et al. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation The Task Force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC). Eur Heart J. 2018;39:119-77. doi:10.1093/eurheartj/ehx393.
7. Auer J, Berent R, Primus C. PCSK9 inhibitors and cardiovascular events. N Engl J Med. 2015;373:773-4. doi:10.1056/NEJMc1508222.
8. Cheng J, Oemrawsingh R, Garcia-Gracia H. Serum proprotein convertase subtilisin/kexin type 9 level is associated with coronary plaque inflammation and cardiovascular outcome independent from serum LDL level. Circulation. 2014;130(2): A16101.
9. Giugliano R, Pedersen, T, Park, J, et al. Clinical efficacy and safety of achieving very low LDL-cholesterol concentrations with the PCSK9 inhibitor evolocumab: a prespecified secondary analysis of the FOURIER trial. Lancet. 2017;390:1962-71. doi:10.1016/S01406736(17)32290-0.
10. Ezhov MV, Lazareva NV, Sagaidak OV, et al. The frequency of lipid metabolism disorders and the use of statins in acute coronary syndrome (according to the Federal Register of Aute Coronary Syndrome). Atherosclerosis and Dyslipidemias. 2018;1:47-57. (In Russ.)
11. Nanchen D, Gencer B, Muller O, et al. Prognosis of Patient with Familiar Hypercholesterolemia After Acute Coronary Syndromes. Circulation. 2016;134(10):698-709. doi:10.1161/CIRCULATIONAHA.116.023007.
12. Schwartz G, Steg P, Szarek M, et al. Alirocumab and cardiovascular outcomes after acute coronary syndrome. N Engl J Med. 2018;379:2097-107. doi:10.1056/NEJMoa1801174.
13. Chapman M, Stock J, Ginsberg H. PCSK9 inhibitors and cardio-vascular disease: heralding a new therapeutic era. Curr Opin Lipidol. 2015;26:511-20. doi:10.1097/MOL.0000000000000239.
14. Jernberg T, Hasvold P, Henriksson M, et al. Cardiovascular risk in post-myocardial infarction patients: nationwide real world data demonstrate the importance of a long-term perspective. Eur Heart J. 2015;36(19):1163‐70. doi:10.1093/eurheartj/ehu505.
15. Navarese E, Kolodziejczak M, Winter M, et al. Association of PCSK9 with platelet reactivity in patients with acute coronary syndrome treated with prasugrel or ticagrelor: The PCSK9REACT study. Int J Cardiol. 2017;227:644-9. doi:10.1016/j.ijcard.2016.10.084.
16. Cuchel M, Bruckert E, Ginsberg H, et al. Homozygous familial hypercholesterolemia: new insights and guidance for clinicians to improve detection and clinical management. A position paper from the Consensus Panel on Familial Hypercholesterolaemia of the European Atherosclerosis Society. Eur Heart J. 2014;35:2146-57. doi:10.1093/eurheartj/ehu274.
17. Dadu R, Ballantyne C. Lipid lowering with PCSK9 inhibitors. Nat Rev Cardiol. 2014;11(10):563-75. doi:10.1038/nrcardio.2014.84.
18. Lambert G, Chatelais M, Petrides F, et al. Normalization of low-density lipoprotein receptor expression in receptor defective homozygous familial hypercholesterolemia by Am. Coll. Cardiol. 2014;64(21):2299-300. doi:10.1016/j.jacc.2014.07.995.
19. Cicero A, Tartagni E, Ertek S. Safety and tolerability of injectable lipid-lowering drugs: a review of available clinical data. Expert Opin. Drug. Saf. 2014;13(8):1023-30. doi:10.1517/14740338.2014.932348.
20. Bhatt D, Briggs A, Reed S, et al. Cost-Effectiveness of Alirocumab in Patients With Acute Coronary Syndromes: The ODYSSEY OUTCOMES Trial. J Am Coll Cardiol. 2020;75(18):2297‐308. doi:10.1016/j.jacc.2020.03.029.
21. Nozue T, Hattori H, Ishihara M, et al. Comparison of effects of pitavastatin versus pravastatin on serum proprotein convertase subtilissin/kexin type 9 levels in statin-naïve patients with coronary artery disease. Am J Cardiol. 2013;111:1415-9. doi:10.1016/j.amjcard.2013.01.289.
22. Okada K, Iwahashi N, Endo T, et al. Long-term effects of ezetimibe-plus-statin therapy on low-density lipoprotein cholesterol levels as compared with double-dose statin therapy in patients with coronary artery disease. Atherosclerosis. 2012;224:454-6. doi:10.1016/j.atherosclerosis.2012.07.036.
23. Serban M, Colantonio L, Manthripragada A, et al. Statin Intolerance and Risk of Coronary Heart Events and All-Cause Mortality Following Myocardial Infarction. J Am Coll Cardiol. 2017;69(11):1386‐95. doi:10.1016/j.jacc.2016.12.036.
24. Parish S, Peto R, Palmer A, et al. The joint effects of apolipoprotein B, apolipoprotein A1, LDL cholesterol, and HDL cholesterol on risk: 3510 cases of acute myocardial infarction and 9805 controls. Eur Heart J. 2009;30(17):2137-46. doi:10.1093/eurheartj/ehp221.
25. Robinson J, Farnier M, Krempf M, et al. Efficacy and Safety of Alirocumab in Reducing Lipids and Cardiovascular Events. N Engl J Med. 2015;372:1489-99. doi:10.1056/NEJMoa1501031.
26. Ridker P, Rose L, Kastelein J, et al. Cardiovascular event reduction with PCSK9 inhibition among 1578 patients with familial hypercholesterolemia: Results from the SPIRE randomized trials of bococizumab. J Clin Lipidol. 2018;12(4):958‐65. doi:10.1016/j.jacl.2018.03.088.
27. Bonaca M, Nault P, Giugliano R, et al. Low-Density Lipoprotein Cholesterol Lowering With Evolocumab and Outcomes in Patients With Peripheral Artery Disease: Insights From the FOURIER Trial (Further Cardiovascular Outcomes Research With PCSK9 Inhibition in Subjects With Elevated Risk). Circulation. 2018;137(4):338-50. doi:10.1161/CIRCULATIONAHA.117.032235.
Review
For citations:
Barbarash O.L., Fedorova N.V., Sedykh D.Yu., Gruzdeva O.V., Khryachkova O.N., Kashtalap V.V., Filimonova A.A. PCSK9 inhibitors for in-hospital treatment of patients with acute coronary syndrome and severe lipid metabolism disorders. Russian Journal of Cardiology. 2020;25(8):4010. (In Russ.) https://doi.org/10.15829/1560-4071-2020-4010