The effect of various classes of glucose-lowering medications on the blood vessel elasticity in patients with type 2 diabetes
https://doi.org/10.15829/1560-4071-2020-3766
Abstract
Aim. To study the effect of various classes of glucose-lowering agents (dipeptidyl peptidase-4 (DPP-4) and sodium-glucose cotransporter-2 (SGLT-2) inhibitors) on the vascular stiffness in patients with type 2 diabetes (T2D) and high cardiovascular risk.
Material and methods. The open-label, prospective 24-week study included 120 patients with T2D and high cardiovascular risk. We evaluated the effect of modern glucose-lowering medications, empagliflozin at a dose of 25 mg/day (SGLT-2 inhibitor) and sitagliptin at a dose of 100 mg/day (DPP-4 inhibitor), on vascular elasticity, central hemodynamic and laboratory parameters.
Results. After 24-week therapy, the target glycated hemoglobin level reached 71% and 80% of patients in the sitagliptin and empagliflozin groups, respectively. In both groups, vascular stiffness and central hemodynamic parameters were improved. However, significant changes were recorded only in the empagliflozin (carotid-femoral pulse wave velocity decreased by 14,4%, augmentation index — by 6%, central pulse pressure — by 7,8%) (p<0,05). Use of sitagliptin was associated with significant improvements in the lipid profile (total cholesterol decreased by 9,5%, triglycerides — by 21%, low density lipoproteins — by 15,1%; high density lipoproteins increased by 15,7%) (p<0,05). In the empagliflozin group, anthropometric parameters were improved (body mass index decreased by 9,1%, waist circumference — by 4,1%) (p<0,05). Patients in both groups had a significant decrease in HOMA-IR index and highly sensitive C-reactive protein: by 34% and 51,6% in the empagliflozin group and by 31,8% and 22,1% in the sitagliptin group, respectively (p<0,05).
Conclusion. The use of empagliflozin is more associated with arterial stiffness decrease in T2D patients with high cardiovascular risk compared with sitagliptin.
About the Authors
S. V. NedogodaRussian Federation
Volgograd
I. N. Barykina
Russian Federation
Volgograd
A. S. Salasyuk
Russian Federation
Volgograd
T. N. Sanina
Russian Federation
Volgograd
V. O. Smirnova
Russian Federation
Volgograd
E. A. Popova
Russian Federation
Volgograd
References
1. American Diabetes Association. Standards of medical care in diabetes-2015. Diabetes Care 2015; 38(Suppl. 1): S1–93.
2. Emerging Risk Factors Collaboration, Sarwar N, Gao P, Seshasai SR et al. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet 2010;375: 2215–2222.2
3. Creager MA, Lüscher TF, Cosentino F, et al. Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: part I. Circulation 2003;108:1527–1532. doi:10.1161/01.CIR.0000091257.27563.32
4. Hsueh WA, Wyne K. Renin-angiotensin-aldosterone system in diabetes and hypertension. J Clin Hypertens (Greenwich) 2011;13:224–237. doi: 10.1111/j.1751-7176.2011.00449.x.
5. Wei Q, Ren X, Jiang Y, et al. Advanced glycation end products accelerate rat vascular calcification through RAGE/oxidative stress. BMC Cardiovasc Disord 2013;13:13. doi: 10.1186/1471-2261-13-13.
6. Stehouwer CD, Henry RM, Ferreira I. Arterial stiffness in diabetes and the metabolic syndrome: a pathway to cardiovascular disease. Diabetologia 2008;51:527–539. doi: 10.1007/s00125-007-0918-3.
7. Wagenseil JE, Mecham RP. Elastin in large artery stiffness and hypertension. J Cardiovasc Transl Res 2012; 5: 264–273.8,9. doi: 10.1007/s12265-012-9349-8.
8. UK Prospective Diabetes Study (UKPDS) Group. Effect of intensive blood glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet. 1998; 352(9131): 854–65. doi: https://doi.org/10.1016/S0140-6736(98)07037-8
9. Gerstein H.C., Miller M.E., Byington R.P., et al. Action to Control Cardiovascular Risk in Diabetes Study Group. Effects of intensive glucose lowering in type 2 diabetes. N. Engl. J. Med. 2008; 358(24):2545–59. doi: 10.1056/NEJMoa0802743.
10. Patel A., MacMahon S., Chalmers J., et al. ADVANCE Collaborative Group. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N. Engl. J. Med. 2008; 358(24): 2560–72. doi: 10.1056/NEJMoa0802987.
11. Ismail-Beigi F., Moghissi E. Individualizing glycemic targets in type 2 diabetes mellitus: implications of recent clinical trials. Ann Intern Med. 2011 Apr 19;154(8):554-9. doi: 10.7326/0003-4819-154-8-201104190-00007.
12. Cosentino F., Grant PJ., Aboyans V., et al. ESC Scientific Document Group, 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD: The Task Force for diabetes, pre-diabetes, and cardiovascular diseases of the European Society of Cardiology (ESC) and the European Association for the Study of Diabetes (EASD). Eur Heart J. 2020 Jan 7;41(2):255-323. doi: 10.1093/eurheartj/ehz486.
13. Vlachopoulos C, Aznaouridis K, Stefanadis C. Prediction of cardiovascular events and all-cause mortality with arterial stiffness: a systematic review and meta-analysis. J Am Coll Cardiol 2010;55:1318–1327. doi: 10.1016/j.jacc.2009.10.061.
14. Nilsson PM, Boutouyrie P, Cunha P et al. Early vascular ageing in translation: from laboratory investigations to clinical applications in cardiovascular prevention. J Hypertens. 2013 Aug;31(8):1517-26. doi: 10.1097/HJH.0b013e328361e4bd.
15. Jung CH, Jung SH, Kim KJ et al. Differential associations of central and brachial blood pressure with carotid atherosclerosis and microvascular complications in patients with type 2 diabetes. BMC Cardiovasc Disord 2014;14:23. doi: 10.1186/1471-2261-14-23.
16. Nilsson PM, Cederholm J, Eeg-Olofsson K et al. Pulse pressure strongly predicts cardiovascular disease risk in patients with type 2 diabetes from the Swedish National Diabetes Register (NDR). Diabetes Metab 2009;35:439–446. doi: 10.1016/j.diabet.2009.04.010.
17. Yu D, Simmons D. Association between pulse pressure and risk of hospital admissions for cardiovascular events among people with type 2 diabetes: a population-based case-control study. Diabet Med 2015;32:1201–1206. doi: https://doi.org/10.1111/dme.12693.
18. Kodama S, Horikawa C, Fujihara K et al. Meta-analysis of the quantitative relation between pulse pressure and mean arterial pressure and cardiovascular risk in patients with diabetes mellitus. Am J Cardiol 2014;113:1058–1065. doi: 10.1016/j.amjcard.2013.12.005.
19. Grempler R, Thomas L, Eckhardt M et al. Empagliflozin, a novel selective sodium glucose cotransporter-2 (SGLT-2) inhibitor: characterisation and comparison with other SGLT-2 inhibitors. Diabetes Obes Metab 2012; 14: 83–90. doi: 10.1111/j.1463-1326.2011.01517.x.
20. Cherney DZ, Perkins BA, Soleymanlou N, et al. The effect of empagliflozin on arterial stiffness and heart rate variability in subjects with uncomplicated type 1 diabetes mellitus. Cardiovasc Diabetol 2014;13:28. doi: 10.1186/1475-2840-13-28.
21. Lunder M, Janić M, Japelj M, et al. Empagliflozin on top of metformin treatment improves arterial function in patients with type 1 diabetes mellitus. Cardiovasc Diabetol. 2018;17(1):153. Published 2018 Dec 3. doi: 10.1186/s12933-018-0797-6.
22. Chilton R, Tikkanen I, Cannon CP, et al. Effects of empagliflozin on blood pressure and markers of arterial stiffness and vascular resistance in patients with type 2 diabetes. Diabetes Obes Metab. 2015;17(12):1180–1193. doi: 10.1111/dom.12572.
23. Bosch A, Ott C, Jung S, et al. How does empagliflozin improve arterial stiffness in patients with type 2 diabetes mellitus? Sub analysis of a clinical trial. Cardiovasc Diabetol. 2019;18(1):44. Published 2019 Mar 29. doi: 10.1186/s12933-019-0839-8.
24. Chrysant S.G., Chrysant G.S. Clinical implications of cardiovascular preventing pleiotropic effects of dipeptidyl peptidase-4 inhibitors. Am J Cardiol. 2012 Jun 1;109(11):1681-5. doi: 10.1016/j.amjcard.2012.01.398.
25. Matsubara J., Sugiyama S., Sugamura K. еt al. A dipeptidyl peptidase-4 inhibitor, des-fluoro-sitagliptin, improves endothelial function and reduces atherosclerotic lesion formation in apolipoprotein E-deficient mice. J Am Coll Cardiol. 2012 Jan 17;59(3):265-76. doi: 10.1016/j.jacc.2011.07.053.
26. Liu L., Liu J., Wong W.T. еt al. Dipeptidyl peptidase 4 inhibitor sitagliptin protects endothelial function in hypertension through a glucagon-like peptide 1-dependent mechanism. Hypertension. 2012 Sep;60(3):833-41. doi: 10.1161/HYPERTENSIONAHA.112.195115.
27. Engel S.S., Golm G.T., Shapiro D. et al. Cardiovascular safety of sitagliptin in patients with type 2 diabetes mellitus: a pooled analysis. Cardiovasc Diabetol. 2013 Jan 3;12:3. doi: 10.1186/1475-2840-12-3.
28. Tomiyama H., Miwa T., Kanet K., et al. Impact of glycemic control with sitagliptin on the 2-year progression of arterial stiffness: a sub-analysis of the PROLOGUE study. Cardiovasc Diabetol 2016; 15(1):134. doi: 10.1186/s12933-016-0472-8.
29. Laurent S, Cockcroft J, Van Bortel L, et al. Expert consensus document on arterial stiffness: methodological issues and clinical applications. Eur Heart J 2006; (27): 2588-605. doi: https://doi.org/10.1093/eurheartj/ehl254
30. Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem. 1972;18:499–502. doi: https://doi.org/10.1093/clinchem/18.6.499
31. Roman MJ, Deveraux RB, Schwartz JE, et al, 2005 Arterial stiffness in chronic inflammatory diseases. Hypertension. 2005 Jul;46(1):194-9. doi: https://doi.org/10.1161/01.HYP.0000168055.89955.db.
32. Tedesco MA, Natale F, Di Salvo G, Caputo S, Capasso M, Calabro R, 2004 Effects of coexisting hypertension. and type II diabetes mellitus on arterial stiffness. J Hum Hypertens 18: 469-473. doi: 10.1038/sj.jhh.1001690.
33. Green JB, Bethel MA, Paul SK, et al. Rationale, design, and organization of a randomized, controlled Trial Evaluating Cardiovascular Outcomes with Sitagliptin (TECOS) in patients with type 2 diabetes and established cardiovascular disease. Am Heart J. 2013 Dec;166(6):983-989.e7. doi: 10.1016/j.ahj.2013.09.003.
34. Abdul-Ghani M. et al. SGLT2 inhibitors and cardiovascular risk: lessons learned from the EMPA-REG OUTCOME study. Diabetes Care. 2016 May;39(5):717-25. doi: 10.2337/dc16-0041.
35. Boutouyrie P, Tropeano AI, Asmar R, et al. Aortic stiffness is an independent predictor of primary coronary events in hypertensive patients: a longitudinal study. Hypertension. 2002 Jan;39(1):10-5. doi: https://doi.org/10.1161/hy0102.099031
36. Asmar R, Rudnichi A, Blacher J, et al. Pulse pressure and aortic pulse wave are markers of cardiovascular risk in hypertensive populations. Am J Hypertens. 2001 Feb;14(2):91-7. doi: https://doi.org/10.1016/S0895-7061(00)01232-2
37. Dai Y. et al. Dipeptidyl peptidase-4 inhibitors in cardioprotection: a promising therapeutic approach. Acta Diabetol. 2013 Dec;50(6):827-35. doi: 10.1007/s00592-013-0496-4.
38. Derosa G, Ragonesi PD, Fogari E, et al. Sitagliptin added to previously taken antidiabetic agents on insulin resistance and lipid profile: a 2‐year study evaluation. Fundam Clin Pharmacol. 2014 Apr;28(2):221-9. doi: 10.1111/fcp.12001.
39. Satoh-Asahara N. et al. A dipeptidyl peptidase-4 inhibitor, sitagliptin, exerts anti-inflammatory effects in type 2 diabetic patients. Metabolism. 2013 Mar;62(3):347-51. doi: 10.1016/j.metabol.2012.09.004.
40. Bell R. M., Yellon D. M. SGLT2 inhibitors: hypotheses on the mechanism of cardiovascular protection. Lancet Diabetes Endocrinol. 2018 Jun;6(6):435-437. doi: 10.1016/S2213-8587(17)30314-5.
41. Verma S., McMurray J. J. V. SGLT2 inhibitors and mechanisms of cardiovascular benefit: a state-of-the-art review. Diabetologia. 2018 Oct;61(10):2108-2117. doi: 10.1007/s00125-018-4670-7.
Review
For citations:
Nedogoda S.V., Barykina I.N., Salasyuk A.S., Sanina T.N., Smirnova V.O., Popova E.A. The effect of various classes of glucose-lowering medications on the blood vessel elasticity in patients with type 2 diabetes. Russian Journal of Cardiology. 2020;25(4):3766. (In Russ.) https://doi.org/10.15829/1560-4071-2020-3766