Preview

Russian Journal of Cardiology

Advanced search

Efficacy of P2Y12 receptor blockers: current approaches and prospects

https://doi.org/10.15829/1560-4071-2025-6426

EDN: FBDVCN

Abstract

The review is devoted to current methods for evaluating the efficacy of P2Y12 receptor blockers in patients with coronary artery disease. Literature and original data are presented. Currently existing genetic and functional tests are insufficient for reliable diagnosis of resistance to P2Y12 receptor blockers, which may be due to a number of concomitant factors, including inflammatory process. Proinflammatory markers can be studied to develop novel approaches to assessing the risk of thrombotic events during P2Y12 receptor blocker therapy.

About the Authors

A. S. Anisimova
Russian University of Medicine; DavydovskyCity Clinical Hospital
Russian Federation

Moscow


Competing Interests:

None



E. Yu. Vasilyeva
Russian University of Medicine; DavydovskyCity Clinical Hospital
Russian Federation

Moscow


Competing Interests:

None



References

1. Vrints C, Andreotti F, Koskinas KC, et al. 2024 ESC Guidelines for the management of chronic coronary syndromes. Eur Heart J [Internet]. 2024;45(36):3415-537. doi:10.1093/eurheartj/ehae177.

2. Byrne RA, Rossello X, Coughlan JJ, et al. 2023 ESC Guidelines for the management of acute coronary syndromes. Eur Heart J. 2023;44(38):3720-826. doi:10.1093/eurheartj/ehad191.

3. Barbarash OL, Karpov YuA, Panov AV, et al. 2024 Clinical practice guidelines for Stable coronary artery disease. Russian Journal of Cardiology. 2024;29(9):6110. (In Russ.) doi:10.15829/1560-4071-2024-6110.

4. Barbarash OL, Duplyakov D V, Zateischikov DA, et al. 2020 Clinical practice guidelines for Acute coronary syndrome without ST segment elevation. Russian Journal of Cardiology. 2021;26(4):4449. (In Russ.) doi:10.15829/1560-4071-2021-4449.

5. Averkov OV, Harutyunyan GK, Duplyakov DV, et al. 2024 Clinical practice guidelines for Acute myocardial infarction with ST segment elevation electrocardiogram. Russian Journal of Cardiology. 2025;30(3):6306. (In Russ.) doi:10.15829/1560-4071-2025-6306.

6. Collet JP, Thiele H, Barbato E, et al. 2020 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur Heart J. Oxford University Press; 2021. p. 1289-367. doi:10.1093/eurheartj/ehaa575.

7. Wallentin L, Becker RC, Budaj A, et al. Ticagrelor versus Clopidogrel in Patients with Acute Coronary Syndromes. New England Journal of Medicine. 2009;361(11):1045-57. doi:10.1056/NEJMoa0904327.

8. Wiviott SD, Braunwald E, McCabe CH, et al. Prasugrel versus Clopidogrel in Patients with Acute Coronary Syndromes. New England Journal of Medicine. 2007;357(20):2001-15. doi:10.1056/NEJMoa0706482.

9. Schüpke S, Neumann F-J, Menichelli M, et al. Ticagrelor or Prasugrel in Patients with Acute Coronary Syndromes. New England Journal of Medicine. 2019;381(16):1524-34. doi:10.1056/NEJMoa1908973.

10. Jiang X-L, Samant S, Lesko LJ, et al. Clinical Pharmacokinetics and Pharmacodynamics of Clopidogrel. Clin Pharmacokinet. 2015;54(2):147-66. doi:10.1007/s40262-014-0230-6.

11. Scott SA, Sangkuhl K, Gardner EE, et al. Clinical pharmacogenetics implementation consortium guidelines for cytochrome P450-2C19 (CYP2C19) genotype and clopidogrel therapy. Clin Pharmacol Ther. 2011;90(2):328-32. doi:10.1038/clpt.2013.105.

12. Wedlund PJ, Wedlund PJ. The CYP2C19 Enzyme Polymorphism. Pharmacology. 2000; 61(3): 174-83. doi:10.1159/000028398.

13. Mega JL, Close SL, Wiviott SD, et al. Cytochrome P-450 Polymorphisms and Response to Clopidogrel. New England Journal of Medicine. 2009;360(4):354-62. doi:10.1056/NEJMoa0809171.

14. Gurbel PA, Shuldiner AR, Bliden KP, et al. The relation between CYP2C19 genotype and phenotype in stented patients on maintenance dual antiplatelet therapy. Am Heart J. 2011;161(3):598-604. doi:10.1016/j.ahj.2010.12.011.

15. Luis J, Michael C, hD P, et al. International Consensus Statement on Platelet Function and Genetic Testing in Percutaneous Coronary Intervention. JACC Cardiovasc Interv. 2024; 7(22):2639-63. doi:10.1016/j.jcin.2024.08.027.

16. Jeong YH. "East Asian Paradox": Challenge for the current antiplatelet strategy of "one-guideline-fits-all races" in acute coronary syndrome. Curr Cardiol Rep. 2014;16(5). doi:10.1007/s11886-014-0485-4.

17. Pereira NL, Farkouh ME, So D, et al. Effect of Genotype-Guided Oral P2Y12 Inhibitor Selection vs Conventional Clopidogrel Therapy on Ischemic Outcomes after Percutaneous Coronary Intervention: The TAILOR-PCI Randomized Clinical Trial. JAMA — Journal of the American Medical Association. 2020;324(8):761-71. doi:10.1001/jama.2020.12443.

18. Varenhorst C, Eriksson N, Johansson ─, et al. Effect of genetic variations on ticagrelor plasma levels and clinical outcomes. Eur Heart J. 2015;36(29):1901-12. doi:10.1093/eurheartj/ehv116.

19. Sorich MJ, Vitry A, Ward MB, et al. Prasugrel vs. clopidogrel for cytochrome P450 2C19─ ge-notyped subgroups: integration of the TRITON─TIMI 38 trial data. Journal of Thrombosis and Haemostasis. 2010;8(8):1678-84. doi:10.1111/j.1538-7836.2010.03923.x.

20. Waksman R, Gurbel PA, Gaglia MA, et al. 8 Vasodilator-Stimulated Phosphoprotein (VASP) Assay. 2014. doi:10.1160/TH11-09-0623.

21. Barragan P, Bouvier J, Roquebert P, et al. Resistance to thienopyridines: Clinical detection of coronary stent thrombosis by monitoring of vasodilator─stimulated phosphoprotein phosphorylation. Catheterization and Cardiovascular Interventions. 2003;59(3):295-302. doi:10.1002/ccd.10497.

22. Bonello L, Paganelli F, Arpin─Bornet M, et al. Vasodilator─stimulated phosphoprotein phosphorylation analysis prior to percutaneous coronary intervention for exclusion of postprocedural major adverse cardiovascular events. Journal of Thrombosis and Haemostasis. 2007;5(8):1630-6. doi:10.1111/j.1538-7836.2007.02609.x.

23. Liu XF, Cao J, Fan L, et al. Prevalence of and risk factors for aspirin resistance in elderly patients with coronary artery disease. Journal of Geriatric Cardiology. 2013;10(1):21-7. doi:10.3969/j.issn.1671-5411.2013.01.005.

24. Xu L, Wang LF, Yang XC, et al. Platelet function monitoring guided antiplatelet therapy in patients receiving high-risk coronary interventions. Chin Med J (Engl). 2014;127(19):3364-70. doi:10.3760/cma.j.issn.0366-6999.20141604.

25. Dukhin OA, Kalinskaya AI, Rusakovich GI, et al. The state of platelet and plasma hemostasis as a predictor of coronary blood flow in patients with acute myocardial infarction. Kardiologiia. 2022;62(7):31-7. (In Russ.) doi:10.18087/cardio.2022.7.n2143.

26. Kalinskaya AI, Savvinova PP, Vasilieva EY, et al. The specifics of clotting and endogenic fibrinolysis in acute coronary syndrome patients. Russian Journal of Cardiology. 2018;(9):12-6. (In Russ.) doi:10.15829/1560-4071-2018-9-12-16.

27. Patti G, Nusca A, Mangiacapra F, et al. Point-of-Care Measurement of Clopidogrel Responsiveness Predicts Clinical Outcome in Patients Undergoing Percutaneous Coronary Intervention. Results of the ARMYDA-PRO (Antiplatelet therapy for Reduction of MYocardial Damage during Angioplasty-Platelet Reactivity Predicts Outcome) Study. J Am Coll Cardiol. 2008;52(14):1128-33. doi:10.1016/j.jacc.2008.06.038.

28. Price MJ. Standard- vs High-Dose Clopidogrel Based on Platelet Function Testing After Percutaneous Coronary Intervention. JAMA. 2011;305(11):1097. doi:10.1001/jama.2011.290.

29. Trenk D, Stone GW, Gawaz M, et al. A Randomized Trial of Prasugrel Versus Clopidogrel in Patients With High Platelet Reactivity on Clopidogrel After Elective Percutaneous Coronary Intervention With Implantation of Drug-Eluting Stents. J Am Coll Cardiol. 2012; 59(24):2159-64. doi:10.1016/j.jacc.2012.02.026.

30. Collet J-P, Cuisset T, Rangé G, et al. Bedside Monitoring to Adjust Antiplatelet Therapy for Coronary Stenting. New England Journal of Medicine. 2012;367(22):2100-9. doi:10.1056/NEJMoa1209979.

31. Cayla G, Cuisset T, Silvain J, et al. Platelet function monitoring to adjust antiplatelet therapy in elderly patients stented for an acute coronary syndrome (ANTARCTIC): an open-label, blinded-endpoint, randomised controlled superiority trial. The Lancet. 2016;388(10055):2015-22. doi:10.1016/S0140-6736(16)31323-X.

32. Sibbing D, Aradi D, Jacobshagen C, et al. Guided de-escalation of antiplatelet treatment in patients with acute coronary syndrome undergoing percutaneous coronary intervention (TROPICAL-ACS): a randomised, open-label, multicentre trial. The Lancet. 2017;390(10104):1747-57. doi:10.1016/S0140-6736(17)32155-4.

33. Vasilieva EJ, Orlov VN, Barkagan ZS. Shape and spreading of platelets from the blood of patients with acute myocardial infarction. Thromb Haemost. 1984;52(2):201-4.

34. Maxwell MJ, Westein E, Nesbitt WS, et al. Identification of a 2-stage platelet aggregation process mediating shear-dependent thrombus formation. Blood. 2007;109(2):566-76. doi:10.1182/blood-2006-07-028282.

35. Kashiwagi H, Yuhki K, Imamichi Y, et al. Cigarette Smoke Extract Inhibits Platelet Aggregation by Suppressing Cyclooxygenase Activity. TH Open. 2017;01(02): e122-e129. doi:10.1055/s-0037-1607979.

36. Vaidyula VR, Boden G, Rao AK. Platelet and monocyte activation by hyperglycemia and hyperinsulinemia in healthy subjects. Platelets. 2006;17(8):577-85. doi:10.1080/09537100600760814.

37. Bester J, Pretorius E. Effects of IL-1β, IL-6 and IL-8 on erythrocytes, platelets and clot viscoelasticity. Sci Rep. 2016;6:32188. doi:10.1038/srep32188.

38. Clemetson KJ, Clemetson JM, Proudfoot AEI, et al. Functional expression of CCR1, CCR3, CCR4, and CXCR4 chemokine receptors on human platelets. 2000;96(13):4046-54.

39. Brown GT, Narayanan P, Li W, et al. Lipopolysaccharide Stimulates Platelets through an IL-1β Autocrine Loop. The Journal of Immunology. 2013;191(10):5196-203. doi:10.4049/jimmunol.1300354.

40. Maouia A, Rebetz J, Kapur R, et al. The Immune Nature of Platelets Revisited. Transfus Med Rev. W. B. Saunders; 2020. p. 209-20. doi:10.1016/j.tmrv.2020.09.005.

41. Aslam R, Speck ER, Kim M, et al. Platelet Toll-like receptor expression modulates lipopolysaccharide-induced thrombocytopenia and tumor necrosis factor-production in vivo. 2006;107(2):637-41. doi:10.1182/blood-2005-06-2202.

42. Hally K, Fauteux-Daniel S, Hamzeh-Cognasse H, et al. Revisiting platelets and toll-like receptors (TLRS): At the interface of vascular immunity and thrombosis. Int J Mol Sci. 2020;21(17):1-28. doi:10.3390/ijms21176150.

43. Polley MJ, Nachman RL. Human platelet activation by C3a AND C3a des-arg. J Exp Med. 1983;158(2):603-15. doi:10.1084/jem.158.2.603.

44. Chapman LM, Aggrey AA, Field DJ, et al. Platelets Present Antigen in the Context of MHC Class I. The Journal of Immunology. 2012;189(2):916-23. doi:10.4049/jimmunol.1200580.

45. Bakogiannis C, Sachse M, Stamatelopoulos K, et al. Platelet-derived chemokines in inflammation and atherosclerosis. Cytokine. 2019;122. doi:10.1016/j.cyto.2017.09.013.

46. Ceciliani F, Lecchi C. The Immune Functions of α-Acid-Glycoprotein. Curr Protein Pept Sci. 2019;20(6):505-24. doi:10.2174/1389203720666190405101138.

47. Glas R, Ohlén C, Höglund P, et al. The CD8+ T cell repertoire in beta 2-microglobulin-deficient mice is biased towards reactivity against self-major histocompatibility class I. J Exp Med. 1994;179(2):661-72. doi:10.1084/jem.179.2.661.

48. Bubeck D, Roversi P, Donev R, et al. Structure of human complement C8, a precursor to membrane attack. J Mol Biol. 2011;405(2):325-30. doi:10.1016/j.jmb.2010.10.031.

49. Simard JC, Cesaro A, Chapeton-Montes J, et al. S100A8 and S100A9 induce cytokine expression and regulate the NLRP3 inflammasome via ROS-dependent activation of NF-κB(1.). PLoS One. 2013;8(8). doi:10.1371/journal.pone.0072138.

50. Ryu S, Sidorov S, Ravussin E, et al. The matricellular protein SPARC induces inflammatory interferon-response in macrophages during aging. Immunity. 2022;55(9):1609-26.e7. doi:10.1016/j.immuni.2022.07.007.

51. Matter MA, Paneni F, Libby P, et al. Inflammation in acute myocardial infarction: the good, the bad and the ugly. Eur Heart J. Oxford University Press; 2024. p. 89-103. doi:10.1093/eurheartj/ehad486.

52. Ridker PM, Everett BM, Thuren T, et al. Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease. New England Journal of Medicine. 2017;377(12):1119-31. doi:10.1056/NEJMoa1707914.

53. Vasilieva E, Kasyanova O, Shpektor A. The antiplatelet effect of atorvastatin in patients with acute coronary syndrome depends on the hs-CRP level. Acute Cardiac Care. 2008; 10(3):181-4. doi:10.1080/17482940802064970.


  • Current approaches to diagnosing resistance to P2Y12 receptor blockers in patients with coronary artery di­sease have a number of limitations that reduce the effectiveness of their practical use.
  • Immune activation can lead to a decrease in the effectiveness of antiplatelet therapy.
  • Randomized studies are needed to assess the level of inflammation as a criterion for resistance to P2Y12 receptor blockers.

Review

For citations:


Anisimova A.S., Vasilyeva E.Yu. Efficacy of P2Y12 receptor blockers: current approaches and prospects. Russian Journal of Cardiology. 2025;30(6):6426. (In Russ.) https://doi.org/10.15829/1560-4071-2025-6426. EDN: FBDVCN

Views: 25


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1560-4071 (Print)
ISSN 2618-7620 (Online)