A new look at the myocardial fibrosis: "cold" and "hot" phenotypes. Pathogenesis features and potential therapeutic strategies
Abstract
Fibrosis is a process characterized by excessive accumulation of extracellular matrix components in response to injury, ischemia, and chronic metabolic and immune inflammation. Normally, extracellular matrix homeostasis is regulated by maintaining a balance between the intensity of fibrogenesis and fibrolysis. In this review, for the first time in the Russian literature, a new concept of "cold" and "hot" fibrosis is highlighted, based on the peculiarities of the interaction of the extracellular matrix and the immune system. The role of biologically active substances acting as candidate biomarkers for fibrosis and antifibrotic response is discussed. The development of such a biomarker concept can be considered as a basis for the creation of antifibrotic therapy strategies relevant for the treatment of various cardiac diseases.
About the Authors
Natalia A. DragomiretskayaRussian Federation
Ivan I. Volchkov
Russian Federation
Andrey K. Belov
Russian Federation
Liliya A. Gontsova
Russian Federation
Maria V. Vetluzhskaya
Russian Federation
Valery I. Podzolkov
Russian Federation
References
1. Zawadzki A, Leeming DJ, Sanyal AJ, et al. Hot and cold fibrosis: the role of serum biomarkers to assess the immune mechanisms and ECM-cell interactions in human fibrosis. J Hepatol. 2025: S0168-8278(25)00148-5. doi: 10.1016/j.jhep.2025.02.039.
2. Miyara S, Adler M, Umansky KB, et al. Cold and hot fibrosis define clinically distinct cardiac pathologies. Cell Syst. 2025; 16(3):101198. doi: 10.1016/j.cels.2025.101198.
3. Henderson NC, Rieder F, Wynn TA. Fibrosis: from mechanisms to medicines. Nature. 2020; 587(7835): 555-566. doi: 10.1038/s41586-020-2938-9.
4. Alon U. Systems medicine, physiological circuits and the dynamics of disease (1st ed.) Chapman and Hall/CRC. 2023; 270. doi: 10.1201/9781003356929.
5. Jiang W, Xiong Y, Li X, Yang Y. Cardiac Fibrosis: Cellular effectors, molecular pathways, and exosomal roles. Front Cardiovasc Med. 2021; 8:715258. doi: 10.3389/fcvm.2021.715258.
6. Solomakhina N.I., Belenkov Yu.N., Varshavsky V.A. Myocardial fibrosis in systolic and diastolic chronic heart failure: monograph. Мoscow: Рublishing house «Medpraktika-М», 2014, 64 p. ISBN 978-5-98803-315-8 (in Russ).
7. Ye L., D’Agostino G., Loo S.J., et al. Early regenerative capacity in the porcine heart. Circulation 2018; 138: 2798–2808. doi:10.1161/circulationaha.117.031542.
8. Haubner B.J., Schneider J., Schweigmann U., et al. Functional recovery of a human neonatal heart after severe myocardial infarction. Circ. Res 2016; 118: 216–221. doi:10.1161/circresaha. 115.307017.
9. Tzahor E., Poss K.D. Cardiac regeneration strategies: Staying young at heart. Science 2017; 356: 1035–1039. doi:10.1126/science.aam5894
10. O'Reilly S, Tsou PS, Varga J. Senescence and tissue fibrosis: opportunities for therapeutic targeting. Trends Mol Med. 2024; 30(12):1113-1125. doi: 10.1016/j.molmed.2024.05.012.
11. Maruyama K, Imanaka-Yoshida K. The pathogenesis of cardiac fibrosis: a review of recent progress. Int J Mol Sci. 2022; 23(5):2617. doi: 10.3390/ijms23052617.
12. de Castro Brás LE, Frangogiannis NG. Extracellular matrix-derived peptides in tissue remodeling and fibrosis. Matrix Biol. 2020; 91-92:176-187. doi: 10.1016/j.matbio.2020.04.006.
13. Espeland T, Lunde IG, H Amundsen B, et al. Myocardial fibrosis. Tiedsskr Nor Laegeforen. 2018;138(16). English, Norwegian. doi: 10.4045/tidsskr.17.1027.
14. Hilgendorf I, Frantz S, Frangogiannis NG. Repair of the Infarcted Heart: Cellular Effectors, Molecular Mechanisms and Therapeutic Opportunities. Circ Res. 2024;134(12):1718-1751. doi: 10.1161/CIRCRESAHA.124.323658.
15. Pakshir P., Hinz B. The big five in fibrosis: Macrophages, myofibroblasts, matrix, mechanics, and miscommunication. Matrix Biol. 2018; 68: 81–93. doi:10.1016/j.matbio.2018.01.019.
16. Buechler, M.B., Fu, W., and Turley, S.J. Fibroblast-macrophage reciprocal interactions in health, fibrosis, and cancer. Immunity 2021; 54: 903–915. doi:10.1016/j.immuni.2021.04.021.
17. Rao W, Li D, Zhang Q, et al. Complex regulation of cardiac fibrosis: insights from immune cells and signaling pathways. J Transl Med. 2025; 23(1):242. doi: 10.1186/s12967-025-06260-5.
18. Adler M., Mayo A., Zhou X. et al. Principles of cell circuits for tissue repair and fibrosis. iScience. 2020; 23(2):100841. doi: 10.10.16/j.isci.2020.100841
19. Adhyatmika A., Putri K.S., Beljaars L., Melgert B.N. The elusive antifibrotic macrophage. Front Med (Lausanne). 2015; 2:81. doi: 10.3389/fmed.2015.00081.
20. Kokubo K., Onodera A, Kiuchi M, et al. Conventional and pathogenic Th2 cells in inflammation, tissue repair, and fibrosis. Front Immunol. 2022; 13: 945063. doi: 10.3389/fimmu.2022.945063.
21. Hesketh M, Sahin KB, West ZE, Murray RZ. Macrophage phenotypes regulate scar formation and chronic wound healing. Int J Mol Sci. 2017;18(7):1545. doi:10.3390/ijms18071545.
22. Yan L, Wang J, Cai X, et al. Macrophage plasticity: signaling pathways, tissue repair, and regeneration. MedComm 2024; 5(8):e658. doi: 10.1002/mco2.658.
23. Calcagno, D.M., Taghdiri, N., Ninh, et al. Single-cell and spatial transcriptomics of the infarcted heart define the dynamic onset of the border zone in response to mechanical destabilization. Nat CardioVasc Res 2022; 1: 1039–1055. doi:10.1038/s44161-022-00160-3
24. Walraven M, Hinz B. Therapeutic approaches to control tissue repair and fibrosis: Extracellular matrix as a game changer. Matrix Biol. 2018; 71-72:205-224. doi: 10.1016/j.matbio.2018.02.020.
25. Sharma N. Kumar P., Shukla K.S., et al. AGE RAGE Pathways: cardiovascular disease and oxidative stress. Drug Res (Stuttg). 2023; 73(7): 408-411. doi: 10.1055/a-2047-3896.
26. Ke D, Cao M, Ni J, et al. Macrophage and fibroblast trajectory inference and crosstalk analysis during myocardial infarction using integrated single-cell transcriptomic datasets. J Transl Med. 2024; 22(1): 560. doi: 10.1186/s12967-024-05353-x.
27. Fu X, Khalil H, Kanisicak O, et al. Specialized fibroblast differentiated states underlie scar formation in the infarcted mouse heart. J Clin Invest. 2018 May 1;128(5):2127-2143. doi: 10.1172/JCI98215.
28. Patrick R, Janbandhu V, Tallapragada V, et al. Integration mapping of cardiac fibroblast single-cell transcriptomes elucidates cellular principles of fibrosis in diverse pathologies. Sci Adv. 2024; 10(25):eadk8501. doi: 10.1126/sciadv.adk8501.
29. Bastos JM, Scala N, Perpétuo L, et al. Integrative bioinformatic analysis of prognostic biomarkers in heart failure: Insights from clinical trials. Eur J Clin Invest. 2025; 55(4):e70010. doi: 10.1111/eci.70010.
30. Wang, S., Li, K., Pickholz, E., Dobie, et al. An autocrine signaling circuit in hepatic stellate cells underlies advanced fibrosis in nonalcoholic steatohepatitis. Sci Transl Med. 2023; 15, eadd3949. doi:10.1126/scitranslmed.add3949.
31. Higashikuni Y, Liu W, Numata G, et al. NLRP3 inflammasome activation through heart-brain interaction initiates cardiac inflammation and hypertrophy during pressure overload. Circulation. 2023; 147(4): 338-355. doi: 10.1161/CIRCULATIONAHA.122.060860.
32. Bomb R, Heckle MR, Sun Y, et al. Myofibroblast secretome and its auto-/paracrine signaling. Expert Rev Cardiovasc Ther. 2016;14(5):591-598. doi:10.1586/14779072.2016.1147348
33. Setten, E., Castagna, A., Nava-Seden˜o, et al. Understanding fibrosis pathogenesis via modeling macrophage-fibroblast interplay in immune-metabolic context. Nat. Commun. 2022; 13: 6499. Doi.10.1038/s41467-022-34241-5.
34. Podzolkov V. I., Dragomiretskaya N. A., Kazadaeva A. V., et al. Relationships between the activity of neurohormonal systems and intracardiac hemodynamics in patients with heart failure: focus on galectin-3. Russian Journal of Cardiology. 2022;27(4):4957. doi:10.15829/1560-4071-2022-4957. (In Russ)
35. Aghajanian, H., Kimura, T., Rurik, et al. Targeting cardiac fibrosis with engineered T cells. Nature 2019; 573: 430–433. Doi:10.1038/s41586-019-1546-z.
36. Vagnozzi, R.J., Maillet, M., Sargent, M.A., et al. An acute immune response underlies the benefit of cardiac stem cell therapy. Nature 2020; 577: 405–409. Doi: 10.1038/s41586-019-1802-2.
37. Alexanian, M., Przytycki, P.F., Micheletti, R., et al. A transcriptional switch governs fibroblast activation in heart disease. Nature; 2021: 595, 438–443. Doi: 10.1038/s41586-021-03674-1.
38. Dragomiretskaya NA, Tolmacheva AV, Ivannikov AA, et al. Phenotypic clusters and biomarkers profile in patients with chronic heart failure with preserved and mildly reduced left ventricular ejection fraction. Terapevticheskii Arkhiv (Ter. Arkh.). 2024;96(12):1137–1143. (In Russ)
39. Sethi R, Vishwakarma P, Pradhan A. Evidence for aldosterone antagonism in heart failure. Card Fail Rev. 2024; 10:e15. doi: 10.15420/cfr.2024.10.
Supplementary files
Review
For citations:
Dragomiretskaya N.A., Volchkov I.I., Belov A.K., Gontsova L.A., Vetluzhskaya M.V., Podzolkov V.I. A new look at the myocardial fibrosis: "cold" and "hot" phenotypes. Pathogenesis features and potential therapeutic strategies. Russian Journal of Cardiology. :6397. (In Russ.)