Preview

Russian Journal of Cardiology

Advanced search

Hypertriglyceridemia — current status of the problem. Part II: primary and secondary hypertriglyceridemias, treatment options

https://doi.org/10.15829/1560-4071-2025-6240

EDN: SGIPEH

Abstract

Hypertriglyceridemias are a heterogeneous group of pathologies differing in the mechanisms of triglyceride-rich lipoprotein increase, the composition of lipoproteins and related risks. This review article presents information on the profile and pathogenesis of various primary and secondary hypertriglyceridemias, as well as describes current potential of genetic diagnostics, drug and non-drug correction.

About the Authors

A. A. Semenkin
Omsk State Medical University
Russian Federation

Omsk


Competing Interests:

none



A. N. Meshkov
National Medical Research Center for Therapy and Preventive Medicine
Russian Federation

Moscow


Competing Interests:

none



M. V. Yezhov
Chazov National Medical Research Center of Cardiology
Russian Federation

Moscow


Competing Interests:

none



References

1. Ginsberg HN, Packard CJ, Chapman MJ, et al. Triglyceride-rich lipoproteins and their remnants: metabolic insights, role in atherosclerotic cardiovascular disease, and emerging therapeutic strategies-a consensus statement from the European Atherosclerosis Society. Eur Heart J. 2021;42(47):4791-806. doi:10.1093/eurheartj/ehab551.

2. Kiss L, Fur G, Pisipati S, et al. Mechanisms linking hypertriglyceridemia to acute pancreatitis. Acta Physiol (Oxf). 2023;237(3):e13916. doi:10.1111/apha.13916.

3. Koopal C, Marais AD, Westerink J, Visseren FL. Autosomal dominant familial dysbetalipoproteinemia: A pathophysiological framework and practical approach to diagnosis and therapy. J Clin Lipidol. 2017;11(1):12-23.e1. doi:10.1016/j.jacl.2016.10.001.

4. Alves M, Laranjeira F, Correia-da-Silva G. Understanding Hypertriglyceridemia: Integrating Genetic Insights. Genes (Basel). 2024;15(2):190. doi:10.3390/genes15020190.

5. Dron JS, Hegele RA. Genetics of Hypertriglyceridemia. Front Endocrinol (Lausanne). 2020;11:455. doi:10.3389/fendo.2020.00455.

6. Hegele RA, Ginsberg HN, Chapman MJ, et al. European Atherosclerosis Society Consensus Panel. The polygenic nature of hypertriglyceridaemia: implications for definition, diagnosis, and management. Lancet Diabetes Endocrinol. 2014;2(8):655-66. doi:10.1016/S2213-8587(13)70191-8.

7. Paquette M, Bernard S. The Evolving Story of Multifactorial Chylomicronemia Syndrome. Front Cardiovasc Med. 2022;9:886266. doi:10.3389/fcvm.2022.886266.

8. Gill PK, Hegele RA. Familial combined hyperlipidemia is a polygenic trait. Curr Opin Lipidol. 2022;33(2):126-32. doi:10.1097/MOL.0000000000000796.

9. Hegele RA. Illuminating the full spectrum of APOE variation. Atherosclerosis. 2023; 385:117311. doi:10.1016/j.atherosclerosis.2023.117311.

10. Ruel IL, Couture P, Gagne C, et al. Characterization of a novel mutation causing hepatic lipase deficiency among French Canadians. J Lipid Res. 2003;44(8):1508-14. doi:10.1194/jlr.M200479-JLR200.

11. Gill PK, Dron JS, Berberich AJ, et al. Combined hyperlipidemia is genetically similar to isolated hypertriglyceridemia. J Clin Lipidol. 2021;15(1):79-87. doi:10.1016/j.jacl.2020.11.006.

12. O'Dea LSL, MacDougall J, Alexander VJ, et al. Differentiating Familial Chylomicronemia Syndrome From Multifactorial Severe Hypertriglyceridemia by Clinical Profiles. J Endocr Soc. 2019;3(12):2397-410. doi:10.1210/js.2019-00214.

13. Quispe R, Hendrani AD, Baradaran-Noveiry B, et al. Characterization of lipoprotein profiles in patients with hypertriglyceridemic Fredrickson-Levy and Lees dyslipidemia phenotypes: the Very Large Database of Lipids Studies 6 and 7. Arch Med Sci. 2019;15(5): 1195-202. doi:10.5114/aoms.2019.87207.

14. Hegele RA, Pollex RL. Hypertriglyceridemia: phenomics and genomics. Mol Cell Biochem. 2009;326(1-2):35-43. doi:10.1007/s11010-008-0005-1.

15. Brahm AJ, Hegele RA. Combined hyperlipidemia: familial but not (usually) monogenic. Curr Opin Lipidol. 2016;27(2):131-40. doi:10.1097/MOL.0000000000000270.

16. Bashir B, Ho JH, Downie P, et al. Severe Hypertriglyceridaemia and Chylomicronaemia Syndrome-Causes, Clinical Presentation, and Therapeutic Options. Metabolites. 2023; 13(5):621. doi:10.3390/metabo13050621.

17. Brahm AJ, Hegele RA. Chylomicronaemia — current diagnosis and future therapies. Nat Rev Endocrinol. 2015;11(6):352-62. doi:10.1038/nrendo.2015.26.

18. Hopkins PN, Heiss G, Ellison RC, et al. Coronary artery disease risk in familial combined hyperlipidemia and familial hypertriglyceridemia: a case-control comparison from the National Heart, Lung, and Blood Institute Family Heart Study. Circulation. 2003;108(5): 519-23. doi:10.1161/01.CIR.0000081777.17879.85.

19. Trinder M, Vikulova D, Pimstone S, et al. Polygenic architecture and cardiovascular risk of familial combined hyperlipidemia. Atherosclerosis. 2022;340:35-43. doi:10.1016/j.atherosclerosis.2021.11.032.

20. Bennet AM, Di Angelantonio E, Ye Z, et al. Association of apolipoprotein E genotypes with lipid levels and coronary risk. JAMA. 2007;298(11):1300-11. doi:10.1001/jama.298.11.1300.

21. Paquette M, Trinder M, Guay SP, et al. Prevalence of Dysbetalipoproteinemia in the UK Biobank According to Different Diagnostic Criteria. J Clin Endocrinol Metab. 2024: dgae259. doi:10.1210/clinem/dgae259.

22. Blokhina AV, Ershova AI, Kiseleva A V, et al. Applicability of Diagnostic Criteria and High Prevalence of Familial Dysbetalipoproteinemia in Russia: A Pilot Study. Int J Mol Sci. 2023;24(17):13159. doi:10.3390/ijms241713159.

23. Wilson C, Mau T, Weisgraber KH, et al. Salt bridge relay triggers defective LDL receptor binding by a mutant apolipoprotein. Structure. 1994;2(8):713-8. doi:10.1016/s0969-2126(00)00072-1.

24. Ji ZS, Fazio S, Mahley RW. Variable heparan sulfate proteoglycan binding of apolipoprotein E variants may modulate the expression of type III hyperlipoproteinemia. J Biol Chem. 1994;269(18):13421-8.

25. Mahley RW, Huang Y, Rall SC Jr. Pathogenesis of type III hyperlipoproteinemia (dysbetalipoproteinemia). Questions, quandaries, and paradoxes. J Lipid Res. 1999;40(11): 1933-49.

26. Koopal C, van der Graaf Y, Asselbergs FW, et al. Influence of APOE-2 genotype on the relation between adiposity and plasma lipid levels in patients with vascular disease. Int J Obes (Lond). 2015;39(2):265-9. doi:10.1038/ijo.2014.105.

27. de Beer F, Stalenhoef AF, Hoogerbrugge N, et al. Expression of type III hyperlipoproteinemia in apolipoprotein E2 (Arg158!Cys) homozygotes is associated with hyperinsulinemia. Arterioscler Thromb Vasc Biol. 2002;22(2):294-9. doi:10.1161/hq0202.102919.

28. Chuang TY, Chao CL, Lin BJ, Lu SC. Gestational hyperlipidemic pancreatitis caused by type III hyperlipoproteinemia with apolipoprotein E2/E2 homozygote. Pancreas. 2009;38(6):716-7. doi:10.1097/MPA.0b013e3181ac6dc1.

29. Henneman P, van der Sman-de Beer F, Moghaddam PH, et al. The expression of type III hyperlipoproteinemia: involvement of lipolysis genes. Eur J Hum Genet. 2009;17(5): 620-8. doi:10.1038/ejhg.2008.202.

30. Balanescu L, Cardoneanu A, Stanciu G, et al. Hypertriglyceridemia Induced Acute Pancreatitis Caused by a Novel LIPC Gene Variant in a Pediatric Patient. Children (Basel). 2022;9(2):188. doi:10.3390/children9020188.

31. Connelly PW, Hegele RA. Hepatic lipase deficiency. Crit Rev Clin Lab Sci. 1998;35(6):547-72. doi:10.1080/10408369891234273.

32. Santamarina-Fojo S, González-Navarro H, Freeman L, et al. Hepatic lipase, lipoprotein metabolism, and atherogenesis. Arterioscler Thromb Vasc Biol. 2004;24(10):1750-4. doi:10.1161/01.ATV.0000140818.00570.2d.

33. Dichek HL, Brecht W, Fan J, et al. Overexpression of hepatic lipase in transgenic mice decreases apolipoprotein B-containing and high density lipoproteins. Evidence that hepatic lipase acts as a ligand for lipoprotein uptake. J Biol Chem. 1998;273(4):1896-903. doi:10.1074/jbc.273.4.1896.

34. Blom DJ, Jones S, Marais AD. Dysbetalipoproteinemia — clinical and pathophysiological features. S Afr Med J. 2002;92(11):892-7.

35. Paquette M, Bernard S, Baass A. Dysbetalipoproteinemia Is Associated With Increased Risk of Coronary and Peripheral Vascular Disease. J Clin Endocrinol Metab. 2022;108(1):184-90. doi:10.1210/clinem/dgac503.

36. Mach F, Baigent C, Catapano AL, et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Eur Heart J. 2020;41(1):111-88. doi:10.1093/eurheartj/ehz455.

37. Blokhina AV, Ershova AI, Meshkov AN, Drapkina OM. Familial dysbetalipoproteinemia: highly atherogenic and underdiagnosed disorder. Cardiovascular Therapy and Prevention. 2021;20(6):2893. (In Russ.) doi:10.15829/1728-8800-2021-2893.

38. Goldstein JL, Schrott HG, Hazzard WR, et al. Hyperlipidemia in coronary heart disease. II. Genetic analysis of lipid levels in 176 families and delineation of a new inherited disorder, combined hyperlipidemia. J Clin Invest. 1973;52(7):1544-68. doi:10.1172/JCI107332.

39. Vikulova DN, Trinder M, Mancini GBJ, et al. Familial Hypercholesterolemia, Familial Combined Hyperlipidemia, and Elevated Lipoprotein(a) in Patients With Premature Coronary Artery Disease. Can J Cardiol. 2021;37(11):1733-42. doi:10.1016/j.cjca.2021.08.012.

40. Pallazola VA, Sathiyakumar V, Park J, et al. Modern prevalence of dysbetalipoproteinemia (Fredrickson-Levy-Lees type III hyperlipoproteinemia). Arch Med Sci. 2019;16(5):993-1003. doi:10.5114/aoms.2019.86972.

41. Hopkins PN, Wu LL, Hunt SC, Brinton EA. Plasma triglycerides and type III hyperlipidemia are independently associated with premature familial coronary artery disease. J Am Coll Cardiol. 2005;45(7):1003-12. doi:10.1016/j.jacc.2004.11.062.

42. Hegele RA, Boren J, Ginsberg HN, et al. Rare dyslipidaemias, from phenotype to genotype to management: a European Atherosclerosis Society task force consensus statement. Lancet Diabetes Endocrinol. 2020;8(1):50-67. doi:10.1016/S2213-8587(19)30264-5.

43. Drapkina OM, Limonova AS, Garbuzova EV, et al. Personalized prevention: possibilities and limitations of polygenic risk assessment. Russian Journal for Personalized Medicine. 2023;3(5):14-21. (In Russ.) doi:10.18705/2782-3806-2023-3-5-14-21.

44. Brown EE, Sturm AC, Cuchel M, et al. Genetic testing in dyslipidemia: A scientific statement from the National Lipid Association. J Clin Lipidol. 2020;14(4):398-413. doi:10.1016/j.jacl.2020.04.011.

45. D'Erasmo L, Di Costanzo A, Cassandra F, et al. Spectrum of Mutations and Long-Term Clinical Outcomes in Genetic Chylomicronemia Syndromes. Arterioscler Thromb Vasc Biol. 2019;39(12):2531-41. doi:10.1161/ATVBAHA.119.313401.

46. Guay SP, Paquette M, Taschereau A, et al. Acute pancreatitis risk in multifactorial chylomicronemia syndrome depends on the molecular cause of severe hypertriglyceridemia. Atherosclerosis. 2024;392:117489. doi:10.1016/j.atherosclerosis.2024.117489.

47. Boot CS, Luvai A, Neely RDG. The clinical and laboratory investigation of dysbetalipoproteinemia. Crit Rev Clin Lab Sci. 2020;57(7):458-69. doi:10.1080/10408363.2020.1745142.

48. Cortes VA, Fernandez-Galilea M. Lipodystrophies: adipose tissue disorders with severe metabolic implications. J Physiol Biochem. 2015;71(3):471-8. doi:10.1007/s13105-015-0404-1.

49. Hussain I, Patni N, Garg A. Lipodystrophies, dyslipidaemias and atherosclerotic cardiovascular disease. Pathology. 2019;51(2):202-12. doi:10.1016/j.pathol.2018.11.004.

50. Knebel B, Muller-Wieland D, Kotzka J. Lipodystrophies-Disorders of the Fatty Tissue. Int J Mol Sci. 2020;21(22):8778. doi:10.3390/ijms21228778.

51. Chiquette E, Oral EA, Garg A, et al. Estimating the prevalence of generalized and partial lipodystrophy: findings and challenges. Diabetes Metab Syndr Obes. 2017;10:375-83. doi:10.2147/DMSO.S130810.

52. Bagias C, Xiarchou A, Bargiota A, Tigas S. Familial Partial Lipodystrophy (FPLD): Recent Insights. Diabetes Metab Syndr Obes. 2020;13:1531-44. doi:10.2147/DMSO.S206053.

53. Simha V, Garg A. Inherited lipodystrophies and hypertriglyceridemia. Curr Opin Lipidol. 2009;20(4):300-8. doi:10.1097/MOL.0b013e32832d4a33.

54. Prieur X, Le May C, Magre J, Cariou B. Congenital lipodystrophies and dyslipidemias. Curr Atheroscler Rep. 2014;16(9):437. doi:10.1007/s11883-014-0437-x.

55. Kountouri A, Korakas E, Maratou E, et al. Familial Partial Lipodystrophy: Clinical Features, Genetics and Treatment in a Greek Referral Center. Int J Mol Sci. 2023;24(15):12045. doi:10.3390/ijms241512045.

56. Virani SS, Morris PB, Agarwala A, et al. 2021 ACC Expert Consensus Decision Pathway on the Management of ASCVD Risk Reduction in Patients With Persistent Hypertriglyceridemia: A Report of the American College of Cardiology Solution Set Oversight Committee. J Am Coll Cardiol. 2021;78(9):960-93. doi:10.1016/j.jacc.2021.06.011.

57. Salas-Gonzalez MD, Bermejo LM, Gonzalez-Rodriguez LG, et al. Adherence to 24-h movement guidelines in Spanish schoolchildren and its association with insulin resistance: a cross-sectional study. Front Public Health. 2023;11:1146580. doi:10.3389/fpubh.2023.1146580.

58. Reaven GM. Banting lecture 1988. Role of insulin resistance in human disease. Diabetes. 1988;37(12):1595-607. doi:10.2337/diab.37.12.1595.

59. Beaupere C, Liboz A, Fève B, et al. Molecular Mechanisms of Glucocorticoid-Induced Insulin Resistance. Int J Mol Sci. 2021;22(2):623. doi:10.3390/ijms22020623.

60. Lain KY, Catalano PM. Metabolic changes in pregnancy. Clin Obstet Gynecol. 2007;50(4):938-48. doi:10.1097/GRF.0b013e31815a5494.

61. Lagathu C, Bereziat V, Gorwood J, et al. Metabolic complications affecting adipose tissue, lipid and glucose metabolism associated with HIV antiretroviral treatment. Expert Opin Drug Saf. 2019;18(9):829-40. doi:10.1080/14740338.2019.1644317.

62. Fathallah N, Slim R, Larif S, et al. Drug-Induced Hyperglycaemia and Diabetes. Drug Saf. 2015;38(12):1153-68. doi:10.1007/s40264-015-0339-z.

63. Khan MAB, Hashim MJ, King JK, et al. Epidemiology of Type 2 Diabetes — Global Burden of Disease and Forecasted Trends. J Epidemiol Glob Health. 2020;10(1): 107-11. doi:10.2991/jegh.k.191028.001.

64. Noubiap JJ, Nansseu JR, Lontchi-Yimagou E, et al. Geographic distribution of metabolic syndrome and its components in the general adult population: A meta-analysis of global data from 28 million individuals. Diabetes Res Clin Pract. 2022;188:109924. doi:10.1016/j.diabres.2022.109924.

65. Taskinen MR, Boren J. New insights into the pathophysiology of dyslipidemia in type 2 diabetes. Atherosclerosis. 2015;239(2):483-95. doi:10.1016/j.atherosclerosis.2015.01.039.

66. Duez H, Lamarche B, Valéro R, et al. Both intestinal and hepatic lipoprotein production are stimulated by an acute elevation of plasma free fatty acids in humans. Circulation. 2008;117(18):2369-76. doi:10.1161/CIRCULATIONAHA.107.739888.

67. Ginsberg HN, Zhang YL, Hernandez-Ono A. Regulation of plasma triglycerides in insulin resistance and diabetes. Arch Med Res. 2005;36(3):232-40. doi:10.1016/j.arcmed.2005.01.005.

68. Blasiole DA, Davis RA, Attie AD. The physiological and molecular regulation of lipoprotein assembly and secretion. Mol Biosyst. 2007;3(9):608-19. doi:10.1039/b700706j.

69. Dash S, Xiao C, Morgantini C, Lewis GF. New Insights into the Regulation of Chylomicron Production. Annu Rev Nutr. 2015;35:265-94. doi:10.1146/annurev-nutr-071714-034338.

70. Gugliucci A. The chylomicron saga: time to focus on postprandial metabolism. Front Endocrinol (Lausanne). 2024;14:1322869. doi:10.3389/fendo.2023.1322869.

71. Stahel P, Xiao C, Nahmias A, Lewis GF. Role of the Gut in Diabetic Dyslipidemia. Front Endocrinol (Lausanne). 2020;11:116. doi:10.3389/fendo.2020.00116.

72. Hirano T. Pathophysiology of Diabetic Dyslipidemia. J Atheroscler Thromb. 2018;25(9): 771-82. doi:10.5551/jat.RV17023.

73. Stahel P, Xiao C, Hegele RA, Lewis GF. The Atherogenic Dyslipidemia Complex and Novel Approaches to Cardiovascular Disease Prevention in Diabetes. Can J Cardiol. 2018;34(5):595-604. doi:10.1016/j.cjca.2017.12.007.

74. Scott R, O'Brien R, Fulcher G, et al. Effects of fenofibrate treatment on cardiovascular disease risk in 9,795 individuals with type 2 diabetes and various components of the metabolic syndrome: the Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) study. Diabetes Care. 2009;32(3):493-8. doi:10.2337/dc08-1543.

75. Nichols GA, Philip S, Reynolds K, et al. Increased Cardiovascular Risk in Hypertriglyceridemic Patients With Statin-Controlled LDL Cholesterol. J Clin Endocrinol Metab. 2018;103(8):3019-27. doi:10.1210/jc.2018-00470.

76. Raposeiras-Roubin S, Rossello X, Oliva B, et al. Triglycerides and Residual Atherosclerotic Risk. J Am Coll Cardiol. 2021;77(24):3031-41. doi:10.1016/j.jacc.2021.04.059.

77. Marston NA, Giugliano RP, Im K, et al. Association Between Triglyceride Lowering and Reduction of Cardiovascular Risk Across Multiple Lipid-Lowering Therapeutic Classes: A Systematic Review and Meta-Regression Analysis of Randomized Controlled Trials. Circulation. 2019;140(16):1308-17. doi:10.1161/CIRCULATIONAHA.119.041998.

78. Patel RS, Pasea L, Soran H, et al. Elevated plasma triglyceride concentration and risk of adverse clinical outcomes in 1.5 million people: a CALIBER linked electronic health record study. Cardiovasc Diabetol. 2022;21(1):102. doi:10.1186/s12933-022-01525-5.

79. Gervois P, Fruchart JC, Staels B. Drug Insight: mechanisms of action and therapeutic applications for agonists of peroxisome proliferator-activated receptors. Nat Clin Pract Endocrinol Metab. 2007;3(2):145-56. doi:10.1038/ncpendmet0397.

80. Lamas Bervejillo M, Ferreira AM. Understanding Peroxisome Proliferator-Activated Receptors: From the Structure to the Regulatory Actions on Metabolism. Adv Exp Med Biol. 2019;1127:39-57. doi:10.1007/978-3-030-11488-6_3.

81. Keating GM. Fenofibrate: a review of its lipid-modifying effects in dyslipidemia and its vascular effects in type 2 diabetes mellitus. Am J Cardiovasc Drugs. 2011;11(4):227-47. doi:10.2165/11207690-000000000-00000.

82. Miller M, Stone NJ, Ballantyne C, et al. Triglycerides and cardiovascular disease: a scientific statement from the American Heart Association. Circulation. 2011;123(20): 2292-333. doi:10.1161/CIR.0b013e3182160726.

83. Frick MH, Elo O, Haapa K, et al. Helsinki Heart Study: primary-prevention trial with gemfibrozil in middle-aged men with dyslipidemia. Safety of treatment, changes in risk factors, and incidence of coronary heart disease. N Engl J Med. 1987;317(20):1237-45. doi:10.1056/NEJM198711123172001.

84. Bloomfield Rubins H, Davenport J, Babikian V, et al.; VA-HIT Study Group. Reduction in stroke with gemfibrozil in men with coronary heart disease and low HDL cholesterol: The Veterans Affairs HDL Intervention Trial (VA-HIT). Circulation. 2001;103(23):2828-33. doi:10.1161/01.cir.103.23.2828.

85. Ginsberg HN, Elam MB, Lovato LC, et al. Effects of combination lipid therapy in type 2 diabetes mellitus. N Engl J Med. 2010;362(17):1563-74. doi:10.1056/NEJMoa1001282.

86. Kim KS, Hong S, Han K, Park CY. Fenofibrate add-on to statin treatment is associated with low all-cause death and cardiovascular disease in the general population with high triglyceride levels. Metabolism. 2022;137:155327. doi:10.1016/j.metabol.2022.15532.

87. Kim NH, Han KH, Choi J, et al. Use of fenofibrate on cardiovascular outcomes in statin users with metabolic syndrome: propensity matched cohort study. BMJ. 2019;366:l5125. doi:10.1136/bmj.l5125.

88. Hong S, Kim KS, Han K, Park CY. Fenofibrate's impact on cardiovascular risk in patients with diabetes: a nationwide propensity-score matched cohort study. Cardiovasc Diabetol. 2024;23(1):263. doi:10.1186/s12933-024-02353-5.

89. Das Pradhan A, Glynn RJ, Fruchart JC, et al.; PROMINENT Investigators. Triglyceride Lowering with Pemafibrate to Reduce Cardiovascular Risk. N Engl J Med. 2022; 387(21):1923-34. doi:10.1056/NEJMoa2210645.

90. Skulas-Ray AC, Wilson PWF, Harris WS, et al. Omega-3 Fatty Acids for the Management of Hypertriglyceridemia: A Science Advisory From the American Heart Association. Circulation. 2019;140(12):e673-e691. doi:10.1161/CIR.0000000000000709.

91. Oscarsson J, Hurt-Camejo E. Omega-3 fatty acids eicosapentaenoic acid and docosahexaenoic acid and their mechanisms of action on apolipoprotein B-containing lipoproteins in humans: a review. Lipids Health Dis. 2017;16(1):149. doi:10.1186/s12944-017-0541-3.

92. Bhatt DL, Steg PG, Miller M, et al.; REDUCE-IT Investigators. Cardiovascular Risk Reduction with Icosapent Ethyl for Hypertriglyceridemia. N Engl J Med. 2019;380(1): 11-22. doi:10.1056/NEJMoa1812792.

93. Rodriguez D, Lavie CJ, Elagizi A, Milani RV. Update on Omega-3 Polyunsaturated Fatty Acids on Cardiovascular Health. Nutrients. 2022;14(23):5146. doi:10.3390/nu14235146.

94. Irfan A, Haider SH, Nasir A, et al. Assessing the Efficacy of Omega-3 Fatty Acids + Statins vs. Statins Only on Cardiovascular Outcomes: A Systematic Review and MetaAnalysis of 40,991 Patients. Curr Probl Cardiol. 2024;49(2):102245. doi:10.1016/j.cpcardiol.2023.102245.

95. Roth EM, Bays HE, Forker AD, et al. Prescription omega-3 fatty acid as an adjunct to fenofibrate therapy in hypertriglyceridemic subjects. J Cardiovasc Pharmacol. 2009;54(3):196-203. doi:10.1097/FJC.0b013e3181b0cf71.

96. Moon JH, Kang SB, Park JS, et al. Up-regulation of hepatic low-density lipoprotein receptor-related protein 1: a possible novel mechanism of antiatherogenic activity of hydroxymethylglutaryl-coenzyme A reductase inhibitor Atorvastatin and hepatic LRP1 expression. Metabolism. 2011;60(7):930-40. doi:10.1016/j.metabol.2010.08.013.

97. Myerson M, Ngai C, Jones J, et al. Treatment with high-dose simvastatin reduces secretion of apolipoprotein B-lipoproteins in patients with diabetic dyslipidemia. J Lipid Res. 2005;46(12):2735-44. doi:10.1194/jlr.M500335-JLR200.

98. Gouni-Berthold I, Schwarz J, Berthold HK. Updates in Drug Treatment of Severe Hypertriglyceridemia. Curr Atheroscler Rep. 2023;25(10):701-9. doi:10.1007/s11883-023-01140-z.

99. Filtz A, Parihar S, Greenberg GS, et al. New approaches to triglyceride reduction: Is there any hope left? Am J Prev Cardiol. 2024;18:100648. doi:10.1016/j.ajpc.2024.


Supplementary files

  • Hypertriglyceridemia is associated with an increased risk of cardiovascular events and acute and chronic pancreatitis.
  • Increased triglyceride levels can be caused by primary genetic disorders, secondary factors, or a combination of both, which are widespread in the population.
  • Primary and secondary hypertriglyceridemia differ in the pathogenesis of lipid disorders, the profile of triglyceride-rich lipoproteins, which requires differentiated approaches to diagnosis and treatment.

Review

For citations:


Semenkin A.A., Meshkov A.N., Yezhov M.V. Hypertriglyceridemia — current status of the problem. Part II: primary and secondary hypertriglyceridemias, treatment options. Russian Journal of Cardiology. 2025;30(2):6240. (In Russ.) https://doi.org/10.15829/1560-4071-2025-6240. EDN: SGIPEH

Views: 566


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1560-4071 (Print)
ISSN 2618-7620 (Online)