Efficacy of transcatheter low-dose thrombolysis in patients with intermediate-high risk pulmonary embolism. Study rationale and design
https://doi.org/10.15829/1560-4071-2025-6060
EDN: HDSXKQ
Abstract
Aim. Comparison of conservative and invasive treatment strategies in patients with intermediate-high risk pulmonary embolism (PE) based on a multimodal assessment of efficacy and safety.
Material and methods. This single-center, open-label, randomized, comparative trial will include 100 patients with a verified diagnosis of PE with intermediate-high risk of 30-day mortality. Patients will be randomized 1:1 to standard anticoagulant therapy or selective low-dose alteplase transcatheter thrombolysis. Patients will be followed for 12 months. The primary endpoint is a decrease in the right ventricle to left ventricle ratio by 20% or more from baseline at 48±6 hours after initiation of therapy. There are secondary endpoints: patient hemodynamic instability; ISTH major bleeding; Qanadli index decrease at 48 hours; degree of residual thrombosis with reduced perfusion at 3-6 months; incidence of post-thromboembolic syndrome at 3-6 months; 30-day, 90-day, and 1-year mortality.
Conclusion. The study will provide important clinical data on the short- and long-term efficacy and safety of different treatment approaches in patients with intermediate-to-high-risk acute pulmonary embolism.
About the Authors
M. A. SimakovaRussian Federation
Candidate of Medicine, Head, Senior Researcher at the National Research Institute of Cardio-Oncology, world-class scientific center "Center for Personalized Medicine"
St. Petersburg
Competing Interests:
The author declares no conflict of interest
S. I. Parkhomenko
Russian Federation
cardiologist, PhD student of the Department of Cardiology of Almazov National Medical Research Centre
St. Petersburg
Competing Interests:
The author declares no conflict of interest
K. B. Lapshin
Russian Federation
Head of Anesthesiology and Intensive Care Unit no. 14 with ICU Wards
St. Petersburg
Competing Interests:
The author declares no conflict of interest
T. D. Glebovskay
Russian Federation
Head of Anesthesiology and Intensive Care Unit no.6
St. Petersburg
Competing Interests:
The author declares no conflict of interest
D. V. Karpova
Russian Federation
Head of Diagnostic Radiology Department No. 1, radiologist
St. Petersburg
Competing Interests:
The author declares no conflict of interest
K. N. Malikov
Russian Federation
Junior researcher of Department for Vascular and Interventional Surgery, functional diagnostician
St. Petersburg
Competing Interests:
The author declares no conflict of interest
Ekaterina Leonidovna Urumova
Russian Federation
junior researcher at the National Research Institute of Cardio-Oncology, world-class scientific center "Center for Personalized Medicine", functional diagnostician
St. Petersburg
Competing Interests:
The author declares no conflict of interest
A. V. Berezina
Russian Federation
Doctor of Medicine, Chief Researcher of Cardiopulmonary Testing Research Department; Senior Researcher at the National Research Institute of Cardio-Oncology, world-class scientific center "Center for Personalized Medicine"
St. Petersburg
Competing Interests:
The author declares no conflict of interest
D. D. Zubarev
Russian Federation
Candidate of Medicine, Head of the Department for X-ray Surgical Methods of Diagnosis and Treatment, researcher of Department for Vascular and Interventional Surgery
St. Petersburg
Competing Interests:
The author declares no conflict of interest
N. V. Marukyan
Russian Federation
Junior researcher of Department for Vascular and Interventional Surgery, endovascular surgeon
St. Petersburg
Competing Interests:
The author declares no conflict of interest
O. M. Moiseeva
Russian Federation
Doctor of Medicine, Chief Researcher of Non-Coronary Heart Disease Research Department
St. Petersburg
Competing Interests:
The author declares no conflict of interest
References
1. Konstantinides SV, Meyer G, Becattini C, et al. 2019 ESC Guidelines for the diagnosis and management of acute pulmonary embolism developed in collaboration with the European Respiratory Society (ERS). Eur Heart J. 2020;41(4):543-603. doi: 10.1093/eurheartj/ehz405.
2. Bryce YC, Perez-Johnston R, Bryce EB, et al. Pathophysiology of right ventricular failure in acute pulmonary embolism and chronic thromboembolic pulmonary hypertension: a pictorial essay for the interventional radiologist. Insights Imaging. 2019;10(1):18. doi: 10.1186/s13244-019-0695-9.
3. Bristow MR, Zisman LS, Lowes BD, et al. The pressure-overloaded right ventricle in pulmonary hypertension. Chest. 1998;114(1 Suppl):101S-106S. doi: 10.1378/chest.114.1_supplement.101s.
4. McIntyre KM, Sasahara AA. The hemodynamic response to pulmonary embolism in patients without prior cardiopulmonary disease. Am J Cardiol. 1971;28(3):288-94. doi: 10.1016/0002-9149(71)90116-0.
5. Marcus JT, Gan CT, Zwanenburg JJ, et al. Interventricular mechanical asynchrony in pulmonary arterial hypertension: left-to-right delay in peak shortening is related to right ventricular overload and left ventricular underfilling. J Am Coll Cardiol. 2008;51(7): 750-7. doi: 10.1016/j.jacc.2007.10.041.
6. Bĕlohlávek J, Dytrych V, Linhart A. Pulmonary embolism, part I: Epidemiology, risk factors and risk stratification, pathophysiology, clinical presentation, diagnosis and nonthrombotic pulmonary embolism. Exp Clin Cardiol. 2013;18(2):129-38.
7. Marti C, John G, Konstantinides S, et al. Systemic thrombolytic therapy for acute pulmonary embolism: a systematic review and meta-analysis. Eur Heart J. 2015;36(10): 605-14. doi: 10.1093/eurheartj/ehu218.
8. Chatterjee S, Chakraborty A, Weinberg I, et al. Thrombolysis for pulmonary embolism and risk of all-cause mortality, major bleeding, and intracranial hemorrhage: a metaanalysis. JAMA. 2014;311(23):2414-21. doi: 10.1001/jama.2014.5990.
9. Meyer G, Vicaut E, Danays T, et al. Fibrinolysis for patients with intermediaterisk pulmonary embolism. N Engl J Med. 2014;370(15):1402-11. doi: 10.1056/NEJMoa1302097.
10. Cherepanova NA, Podlipaeva AА, Andreeva ES, et al. Thrombolysis versus unfractionated heparin for the initial treatment of hemodynamically stable patients with pulmonary embolism — a systematic review and meta-analysis. Russian Journal of Cardiology. 2022;27(3S):5120. (In Russ.) doi: 10.15829/1560-4071-2022-5120.
11. Bishay VL, Adenikinju O, Todd R. FlowTriever Retrieval System for the treatment of pulmonary embolism: overview of its safety and efficacy. Expert Rev Med Devices. 2021;18(11):1039-48. doi: 10.1080/17434440.2021.1982379.
12. Sista AK, Horowitz JM, Tapson VF, et al. Indigo Aspiration System for Treatment of Pulmonary Embolism: Results of the EXTRACT-PE Trial. JACC Cardiovasc Interv. 2021;14(3): 319-29. doi: 10.1016/j.jcin.2020.09.053.
13. Piazza G, Hohlfelder B, Jaff MR, et al. A Prospective, Single-Arm, Multicenter Trial of Ultrasound-Facilitated, Catheter-Directed, Low-Dose Fibrinolysis for Acute Massive and Submassive Pulmonary Embolism: The SEATTLE II Study. JACC Cardiovasc Interv. 2015;8(10):1382-92. doi: 10.1016/j.jcin.2015.04.020.
14. D'Auria S, Sezer A, Thoma F, et al. Outcomes of catheter-directed thrombolysis vs. standard medical therapy in patients with acute submassive pulmonary embolism. Pulm Circ. 2020;10(1):2045894019898368. doi: 10.1177/2045894019898368.
15. Pruszczyk P, Klok FA, Kucher N, et al. Percutaneous treatment options for acute pulmonary embolism: a clinical consensus statement by the ESC Working Group on Pulmonary Circulation and Right Ventricular Function and the European Association of Percutaneous Cardiovascular Interventions. EuroIntervention. 2022;18(8):e623-e638. doi: 10.4244/EIJ-D-22-00246.
16. Kucher N, Boekstegers P, Müller OJ, et al. Randomized, controlled trial of ultrasoundassisted catheter-directed thrombolysis for acute intermediate-risk pulmonary embolism. Circulation. 2014;129(4):479-86. doi: 10.1161/CIRCULATIONAHA.113.005544.
17. Giri J, Sista AK, Weinberg I, et al. Interventional Therapies for Acute Pulmonary Embolism: Current Status and Principles for the Development of Novel Evidence: A Scientific Statement From the American Heart Association. Circulation. 2019;140(20):e774-e801. doi: 10.1161/CIR.0000000000000707.
18. Qanadli SD, El Hajjam M, Vieillard-Baron A, et al. New CT index to quantify arterial obstruction in pulmonary embolism: comparison with angiographic index and echocardiography. AJR Am J Roentgenol. 2001;176(6):1415-20. doi: 10.2214/ajr.176.6.1761415.
19. Leone MB, Giannotta M, Palazzini M, et al. A new CT-score as index of hemodynamic changes in patients with chronic thromboembolic pulmonary hypertension. Radiol Med. 2017;122(7):495-504. doi: 10.1007/s11547-017-0750-x.
20. Schulman S, Kearon C; Subcommittee on Control of Anticoagulation of the Scientific and Standardization Committee of the International Society on Thrombosis and Haemostasis. Definition of major bleeding in clinical investigations of antihemostatic medicinal products in non-surgical patients. J Thromb Haemost. 2005;3(4):692-4. doi: 10.1111/j.1538-7836.2005.01204.x.
21. Lesaffre E. Superiority, equivalence, and non-inferiority trials. Bull NYU Hosp Jt Dis. 2008;66(2):150-4.
22. Avgerinos ED, Jaber W, Lacomis J, et al. Randomized Trial Comparing Standard Versus Ultrasound-Assisted Thrombolysis for Submassive Pulmonary Embolism: The SUNSET sPE Trial. JACC Cardiovasc Interv. 2021;14(12):1364-73. doi: 10.1016/j.jcin.2021.04.049.
23. Liang NL, Avgerinos ED, Marone LK, et al. Comparative Outcomes of UltrasoundAssisted Thrombolysis and Standard Catheter-Directed Thrombolysis in the Treatment of Acute Pulmonary Embolism. Vasc Endovascular Surg. 2016;50(6):405-10. doi: 10.1177/1538574416666228.
24. Kuo WT, Banerjee A, Kim PS, et al. Pulmonary Embolism Response to Fragmentation, Embolectomy, and Catheter Thrombolysis (PERFECT): Initial Results From a Prospective Multicenter Registry. Chest. 2015;148(3):667-73. doi: 10.1378/chest.15-0119.
25. Klok FA, Piazza G, Sharp ASP, et al. Ultrasound-facilitated, catheter-directed thrombolysis vs anticoagulation alone for acute intermediate-high-risk pulmonary embolism: Rationale and design of the HI-PEITHO study. Am Heart J. 2022;251:43-53. doi: 10.1016/j.ahj.2022.05.011.
26. Tapson VF, Sterling K, Jones N, et al. A Randomized Trial of the Optimum Duration of Acoustic Pulse Thrombolysis Procedure in Acute Intermediate-Risk Pulmonary Embolism: The OPTALYSE PE Trial. JACC Cardiovasc Interv. 2018;11(14):1401-10. doi: 10.1016/j.jcin.2018.04.008.
27. Sterling KM, Goldhaber SZ, Sharp ASP, et al. Prospective Multicenter International Registry of Ultrasound-Facilitated Catheter-Directed Thrombolysis in IntermediateHigh and High-Risk Pulmonary Embolism (KNOCOUT PE). Circ Cardiovasc Interv. 2024;17(3):e013448. doi: 10.1161/CIRCINTERVENTIONS.123.013448.
28. Parkhomenko SI, Lapshin KB, Glebovskaya TD, et al. Pulmonary embolism: options for interventional treatment in the intermediate-high risk group. Arterial Hypertension. 2023;29(3):306-19. (In Russ.) doi: 10.18705/1607-419X-2023-29-3-306-319.
29. Klok FA, Hoeper MM. Predicting recurrent pulmonary embolism and chronic thromboembolic pulmonary hypertension: one more way to skin the cat. Eur Respir J. 2017;49(5):1700413. doi: 10.1183/13993003.00413-2017.
30. Valerio L, Mavromanoli AC, Barco S, et al. Chronic thromboembolic pulmonary hypertension and impairment after pulmonary embolism: the FOCUS study. Eur Heart J. 2022;43(36):3387-98. doi: 10.1093/eurheartj/ehac206.
31. Sharma GV, Burleson VA, Sasahara AA. Effect of thrombolytic therapy on pulmonarycapillary blood volume in patients with pulmonary embolism. N Engl J Med. 1980;303(15):842-5. doi: 10.1056/NEJM198010093031502.
32. Matusov Y, Yaqoob M, Karumanchi A, et al. Long term recovery of right ventricular function after treatment of intermediate and high risk pulmonary emboli. Thromb Res. 2023;225:57-62. doi: 10.1016/j.thromres.2023.03.012.
33. Wang D, Fan G, Zhang X, et al. Prevalence of long-term right ventricular dysfunction after acute pulmonary embolism: a systematic review and meta-analysis. EClinicalMedicine. 2023;62:102153. doi: 10.1016/j.eclinm.2023.102153.
34. Konstantinides SV, Vicaut E, Danays T, et al. Impact of Thrombolytic Therapy on the Long-Term Outcome of Intermediate-Risk Pulmonary Embolism. J Am Coll Cardiol. 2017;69(12):1536-44. doi: 10.1016/j.jacc.2016.12.039.
35. Klok FA, Dzikowska-Diduch O, Kostrubiec M, et al. Derivation of a clinical prediction score for chronic thromboembolic pulmonary hypertension after acute pulmonary embolism. J Thromb Haemost. 2016;14(1):121-8. doi: 10.1111/jth.13175.
Supplementary files
- Normotensive patients with intermediate-to-high risk pulmonary embolism (PE) and 30-day mortality have a high risk of hemodynamic instability in the first 72 hours of hospital stay.
- The use of systemic thrombolysis in this group of patients is limited by the high incidence of hemorrhagic complications.
- The study will assess the impact of selective transcatheter thrombolysis on the short-term and long-term prognosis of patients with PE with intermediate-high mortality risk.
Review
For citations:
Simakova M.A., Parkhomenko S.I., Lapshin K.B., Glebovskay T.D., Karpova D.V., Malikov K.N., Urumova E.L., Berezina A.V., Zubarev D.D., Marukyan N.V., Moiseeva O.M. Efficacy of transcatheter low-dose thrombolysis in patients with intermediate-high risk pulmonary embolism. Study rationale and design. Russian Journal of Cardiology. 2025;30(3):6060. (In Russ.) https://doi.org/10.15829/1560-4071-2025-6060. EDN: HDSXKQ