Identification of atrial fibrillation predictors on an electrocardiogram using a neural network
https://doi.org/10.15829/1560-4071-2024-5907
Abstract
Atrial fibrillation (AF) is a common rhythm disorder, a life-threatening complication of which is cardioembolic stroke leading to disability and death. This necessitates the search for early predictors of this pathology. P wave and PR interval abnormalities on electrocardiography (ECG) are associated with the AF risk. Neural networks are considered for rapid ECG analysis in routine practice and identifying the risks of AF occurrence and/or relapse. In recent years, advances in joint projects between medicine and artificial intelligence have made significant progress in the use of open ECG databases for deep machine learning of neural networks. These studies have shown that artificial intelligence makes it possible to identify predictors of AF, which will significantly reduce the risk of mortality due to thromboembolism. This paper reviews in detail the results of published studies that highlight the effectiveness of neural networks to improve AF risk assessment.
About the Authors
A. Yu. MaksakovaRussian Federation
Novosibirsk
S. A. Kim
Russian Federation
Novosibirsk
M. A. Ashurova
Russian Federation
Novosibirsk
I. G. Sergeeva
Russian Federation
Novosibirsk
N. V. Shlyakhtina
Russian Federation
Novosibirsk
R. Yu. Epifanov
Russian Federation
Novosibirsk
S. S. Stolyarov
Russian Federation
Novosibirsk
References
1. Benjamin EJ, Muntner P, Alonso A et al. American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee. Heart Disease and Stroke Statistics-2019 Update: A Report From the American Heart Association. Circulation. 2019 Mar 5; 139(10):e56-e528. doi: 10.1161/CIR.0000000000000659
2. Hindricks G, Potpara T, Dagres N et al. 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS): The Task Force for the diagnosis and management of atrial fibrillation of the European Society of Cardiology (ESC) Developed with the special contribution of the European Heart Rhythm Association (EHRA) of the ESC. Eur Heart J. 2021 Feb 1;42(5):373-498. doi: 10.1093/eurheartj/ehaa612
3. Andersen, R. S., Peimankar, A., & Puthusserypady, S. (2019). A Deep Learning Approach for Real-Time Detection of Atrial Fibrillation. Expert Systems with Applications, 115, 465-473. doi: 10.1016/j.eswa.2018.08.011
4. Wang J. A deep learning approach for atrial fibrillation signals classification based on convolutional and modified Elman neural network. Future Generation Computer Systems, 102 (2020), pp. 670-679 https://doi.org/10.1016/j.future.2019.09.012
5. Pourbabaee B., Roshtkhari M.J., Khorasani K. Deep convolutional neural networks and learning ECG features for screening paroxysmal atrial fibrillation patients. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 48 (12) (2018), pp. 2095-210 DOI:10.1109/TSMC.2017.2705582
6. Dorado-Díaz P.I., Sampedro-Gómez J., Vicente-Palacios V et al. Applications of artificial intelligence in cardiology. The future is already here. Revista Española de Cardiología (English Edition) 2019;72(12):1065–1075.https://doi.org/10.1016/j.rec.2019.05.014
7. Aizawa Y, Watanabe H, Okumura K. Electrocardiogram (ECG) for the Prediction of Incident Atrial Fibrillation: An Overview. J Atr Fibrillation. 2017 Dec 31;10(4):1724. doi:10.4022/jafib.1724.
8. Conte G, Luca A, Yazdani S et al. (2017). Usefulness of P‐wave duration and morphologic variability to identify patients prone to paroxysmal atrial fibrillation. American Journal of Cardiology, 119(2):275–279. doi:10.1016/j.amjcard.2016.09.043
9. Pérez-Riera AR, de Abreu LC, Barbosa-Barros R et al. P-wave dispersion: An update. Indian Pacing Electrophysiol. J. 2016, 16, 126–133. DOI: 10.1016/j. ipej.2016.10.002.
10. Okutucu S, Aytemir K, Oto A. P-wave dispersion: What we know till now? JRSM Cardiovasc Dis. 2016 Mar 21;5:2048004016639443. doi: 10.1177/2048004016639443
11. Tiffany Win T, Ambale Venkatesh B, Volpe GJ, Mewton N et al. Associations of electrocardiographic P-wave characteristics with left atrial function, and diffuse left ventricular fibrosis defined by cardiac magnetic resonance: the PRIMERI study. Heart Rhythm (2015) 12:155–62. https://doi.org/10.1016/j.hrthm.2014.09.044
12. Kamel H, O'Neal WT, Okin PM et al. Electrocardiographic left atrial abnormality and stroke subtype in the atherosclerosis risk in communities study. Ann Neurol. (2015) 78:670-8. doi: 10.1002/ana.24482.
13. Chousou PA, Chattopadhyay R, Tsampasian V et al. Electrocardiographic Predictors of Atrial Fibrillation. Med Sci (Basel). 2023 Apr 7;11(2):30. doi: 10.3390/medsci11020030.
14. Smith J.W., O’Neal W.T., Shoemaker M.B. et al. PR-Interval Components and Atrial Fibrillation Risk (from the Atherosclerosis Risk in Communities Study) Am. J. Cardiol. 2017;119:466–472. doi: 10.1016/j.amjcard.2016.10.016.
15. Huang Z., Zheng Z., Wu B. et al. Predictive value of P wave terminal force in lead V1 for atrial fibrillation: A meta-analysis.Ann. Noninvasive Electrocardiol 2020;25:e12739. doi: 10.1111/anec.12739
16. Hygrell T., Viberg F., Dahlberg E. et al. An artificial intelligence–based model for prediction of atrial fibrillation from single-lead sinus rhythm electrocardiograms facilitating screening. Europace. 2023:euad036. doi: 10.1093/europace/euad036.
17. Aspuru J, Ochoa-Brust A, Félix RA et al. Segmentation of the ECG Signal by Means of a Linear Regression Algorithm. Sensors 2019, 19, 775. https://doi.org/10.3390/s19040775
18. Beyramienanlou H, Lotfivand N. Shannon’s energy based algorithm in ECG signal processing. Comput. Math Methods Med. 2017;2017:16. doi: 10.1155/2017/8081361.
19. Moskalenko V, Zolotykh N, Osipov G. (2020). Deep Learning for ECG Segmentation. In: Kryzhanovsky B, Dunin-Barkowski W, Redko V, Tiumentsev Y. (eds) Advances in Neural Computation, Machine Learning, and Cognitive Research III. NEUROINFORMATICS 2019. Studies in Computational Intelligence, vol 856. Springer, Cham. https://doi.org/10.1007/978-3-030-30425-6_29
20. Jimenez-Perez G, Alcaine A, Camara O. Delineation of the electrocardiogram with a mixed-quality-annotations dataset using convolutional neural networks. Sci Rep. 2021 Jan 13;11(1):863. doi: 10.1038/s41598-020-79512-7.
21. Zhenqin Chen, Mengying Wang, Meiyu Zhang et al. Post-processing refined ECG delineation based on 1D-UNet. Biomedical Signal Processing and Control, Volume 79, Part 1. 2023. 104106. ISSN 1746-8094. https://doi.org/10.1016/j.bspc.2022.104106.
22. Yaroslavskaya E. I., Kuznetsov V. A., Bessonov I. S. et al. Association of atrial fibrillation with coronary bed lesions (according to the coronary angiography register). Russian Journal of Cardiology. 2019 №7. С.12-18. DOI: 10.15829/1560-4071-2019-12-18)
23. Ribeiro AH, Ribeiro MH et al. Automatic diagnosis of the 12-lead ECG using a deep neural network. Nat Commun. 2020 Apr 9;11(1):1760. doi: 10.1038/s41467-020-15432-4
24. Acharya UR, Oh SL, Hagiwara Y et al. A deep convolutional neural network model to classify heartbeats. Comput Biol Med. 2017 Oct 1; 89:389-396. doi: 10.1016/j.compbiomed.2017.08.022.
25. Huang F, Qin T, Wang L et al. Hybrid Prediction Method for ECG Signals Based on VMD, PSR, and RBF Neural Network. Biomed Res Int. 2021 Mar 15; 2021:6624298. doi: 10.1155/2021/6624298
26. Fang Y, Shi J, Huang Y et al. Electrocardiogram Signal Classification in the Diagnosis of Heart Disease Based on RBF Neural Network. Comput Math Methods Med. 2022 Jan 30; 2022:9251225. doi: 10.1155/2022/9251225
27. Hygrell T, Viberg F, Dahlberg E et al. An artificial intelligence-based model for prediction of atrial fibrillation from single-lead sinus rhythm electrocardiograms facilitating screening. Europace. 2023 Apr 15;25(4):1332-1338. doi: 10.1093/europace/euad036.
28. Jiang J, Deng H, Liao H et al. An Artificial Intelligence-Enabled ECG Algorithm for Predicting the Risk of Recurrence in Patients with Paroxysmal Atrial Fibrillation after Catheter Ablation. J Clin Med. 2023 Mar 1;12(5):1933. doi: 10.3390/jcm12051933.
29. Raghunath A, Nguyen DD, Schram M et al. Artificial intelligence-enabled mobile electrocardiograms for event prediction in paroxysmal atrial fibrillation. Cardiovasc Digit Health J. 2023;4(1):21-28. doi: 10.1016/j.cvdhj.2023.01.002.
Supplementary files
- The increasing burden of atrial fibrillation in the adult population and, as a result, cardioembolic stroke, necessitates the search for its early predictors.
- P wave indices are indicators of atrial electrical activity, so assessing their changes on surface electrocardiography using neural networks can be effective in identifying predictors of atrial fibrillation.
- Deep learning neural network models have shown great success in health data processing in recent years.
Review
For citations:
Maksakova A.Yu., Kim S.A., Ashurova M.A., Sergeeva I.G., Shlyakhtina N.V., Epifanov R.Yu., Stolyarov S.S. Identification of atrial fibrillation predictors on an electrocardiogram using a neural network. Russian Journal of Cardiology. 2024;29(11S):5907. (In Russ.) https://doi.org/10.15829/1560-4071-2024-5907