Cardiac remodeling in patients with heart failure with mildly reduced ejection fraction and metabolic disorders: association with biomarkers and autonomic nervous system parameters
https://doi.org/10.15829/1560-4071-2024-5752
EDN: LMWSDJ
Abstract
Aim. The high prevalence of obesity in a cohort of patients with heart failure and mildly reduced ejection fraction (HFmrEF) determines the relevance of clarifying the role of biomarkers and autonomic imbalance in myocardial remodeling, taking into account metabolic risk factors.
Material and methods. We examined 19 men with postinfarction cardiosclerosis and class II HFmrEF (median age 62 years), overweight/class I-II obesity, type 2 diabetes in 53/47%, 48% of cases, respectively, who received therapy. The biomarker panel included N-terminal pro-brain natriuretic peptide (NT-proBNP), galectin-3, pro-collagen I C-terminal propeptide (PICP), N-terminal propeptide of procollagen type III (PIIINP), C-terminal telopeptide of type I collagen, matrix metalloproteinase-9 (MMP-9), tissue inhibitor of matrix proteinase-1 (TIMP-1), leptin and adiponectin. Heart rate variability (HRV) and turbulence were obtained using 24-hour Holter monitoring. We assessed the time and frequency domains of HRV (24 h) and 5 min recordings of wakefulness at rest, calculated TO (turbulence onset) and TS (turbulence slope).
Results. Significant positive associations of leptin and TIMP-1 levels with left ventricular hypertrophy markers were confirmed. Positive correlations of peak e' with following HRV indicators were revealed: SDNN (r=0,68; p=0,02) and RMSSD (r=0,69; p=0,003). Lower TS values were associated with higher index parameters of left ventricular mass (p<0,05 for all). Associations of biomarkers with autonomic nervous system (ANS) were observed: MMP-9 with RMSSD (r=0,54) and pNN50 (r=0,51); TIMP-1 with TO (r=0,46); PICP/PIIINP ratio with HFn (5 min) (r=-0,49); NT-proBNP/adiponectin ratio with SDNN (r=-0,49); leptin level with TS (r=-0,54) (p<0,05 for all).
Conclusion. In patients with HFmrEF of ischemic origin and additional metabolic risks, serum biomarkers of fibrosis, adipokines, and ANS parameters are associated mainly with markers of increased left ventricular filling pressure. The study results predetermine the further search for potential risk-stratification markers of unfavorable myocardial remodeling and prognosis in large samples of patients with metabolic deviations and HF with EF >40% against the background of modern drug therapy.
Keywords
About the Authors
E. A. LyasnikovaRussian Federation
St. Petersburg
Competing Interests:
None
A. I. Gareeva
Russian Federation
St. Petersburg
Competing Interests:
None
V. K. Muslimova
Russian Federation
St. Petersburg
Competing Interests:
None
E. S. Zhabina
Russian Federation
St. Petersburg
Competing Interests:
None
S. N. Kozlova
Russian Federation
St. Petersburg
Competing Interests:
None
M. Yu. Sitnikova
Russian Federation
St. Petersburg
Competing Interests:
None
E. V. Shlyakhto
Russian Federation
St. Petersburg
Competing Interests:
None
References
1. Savarese G, Stolfo D, Sinagra G, et al. Heart failure with mid-range or mildly reduced ejection fraction. Nat Rev Cardiol. 2022;19(2):100-16. doi:10.1038/s41569-021-00605-5.
2. Lyasnikova EA, Kuular AA, Pavlovskaya AV, et al. Impact of obesity on echocardiographic parameters and N-terminal pro-brain natriuretic peptide levels in patients with heart failure with mid-range ejection fraction: unanswered questions. Russian Journal of Cardiology. 2021;26(6):4462. (In Russ.) doi:10.15829/1560-4071-2021-4462.
3. Lyasnikova EA, Matveev GA, Golikova TI, et al. Association between adipokines and cardiac remodeling in obese patients in preclinical heart failure. Meditsinskiy sovet = Medical Council. 2022;(17):80-91. (In Russ.) doi:10.21518/2079-701X-2022-16-17-80-91.
4. Reinmann M, Meyer P. B-type natriuretic peptide and obesity in heart failure: a mysterious but important association in clinical practice. Cardiovasc Med. 2020;23(01):w02095. doi:10.4414/cvm.2020.02095.
5. van der Hoef CCS, Boorsma EM, Emmens JE, et al. Biomarker signature and pathophysiological pathways in patients with chronic heart failure and metabolic syndrome. Eur J Heart Fail. 2023;25(2):163-73. doi:10.1002/ejhf.2760.
6. Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation. 1996;93(5):1043-65.
7. Steinberg JS, Varma N, Cygankiewicz I, et al. 2017 ISHNE-HRS expert consensus statement on ambulatory ECG and external cardiac monitoring/telemetry. Heart Rhythm. 2017;14(7):e55-e96. doi:10.1016/j.hrthm.2017.03.038.
8. Berngardt ER, Parmon EV, Tsvetnikova AA, et al. Heart rate turbulence — a new marker of sudden cardiac death. Arterial'naya Gipertenziya ("Arterial Hypertension"). 2008;14(1-S2):54-60. (In Russ.)
9. Arshi B, Geurts S, Tilly MJ, et al. Heart rate variability is associated with left ventricular systolic, diastolic function and incident heart failure in the general population. BMC Med. 2022;20(1):91. doi:10.1186/s12916-022-02273-9.
10. Ksela J, Rupert L, Djordjevic A, et al. Altered Heart Rate Turbulence and Variability Parameters Predict 1-Year Mortality in Heart Failure with Preserved Ejection Fraction. J Cardiovasc Dev Dis. 2022;9(7):213. doi:10.3390/jcdd9070213.
11. Dedov II, Mokrysheva NG, Mel'nichenko GA, et al. Obesity. Clinical guidelines. Consilium Medicum. 2021;23(4):311-25. (In Russ.) doi:10.26442/20751753.2021.4.200832.
12. Williams B, Mancia G, Spiering W, et al. ESC Scientific Document Group. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur Heart J. 2018;39(33):3021-104. doi:10.1093/eurheartj/ehy339.
13. Marwick TH, Gillebert TC, Aurigemma G, et al. Recommendations on the Use of Echocardiography in Adult Hypertension: A Report from the European Association of Cardiovascular Imaging (EACVI) and the American Society of Echocardiography (ASE). J Am Soc Echocardiogr. 2015;28(7):727-54. doi:10.1016/j.echo.2015.05.002.
14. Schmidt G, Malik M, Barthel P, et al. Heart-rate turbulence after ventricular premature beats as a predictor of mortality after acute myocardial infarction. Lancet. 1999;353 (9162):1390-6. doi:10.1016/S0140-6736(98)08428-1.
15. Grjibovski AM, Gorbatova МА, Narkevich AN, et al. Required sample size for correlation analysis. Morskaya medicina [Marine medicine]. 2020;6(1);101-6. (In Russ.) doi:10.22328/2413-5747-2020-6-1-101-106.
16. Lebedev DA, Lyasnikova EA, Vasilyeva AA, et al. Molecular biomarker profile of heart failure with mid-range and preserved ejection fraction in patients with type 2 diabetes. Russian Journal of Cardiology. 2020;25(10):3967. (In Russ.) doi:10.15829/1560-4071-2020-3967.
17. Ebong IA, Goff DC Jr, Rodriguez CJ, et al. Mechanisms of heart failure in obesity. Obes Res Clin Pract. 2014;8(6):e540-8. doi:10.1016/j.orcp.2013.12.005.
18. Sletten AC, Peterson LR, Schaffer JE. Manifestations and mechanisms of myocardial lipotoxicity in obesity. J Intern Med. 2018;284:478-91. doi:10.1111/joim.12728.
19. Szczepaniak LS, Dobbins RL, Metzger GJ, et al. Myocardial triglycerides and systolic function in humans: in vivo evaluation by localized proton spectroscopy and cardiac imaging. Magn Reson Med. 2003;49:417-23. doi:10.1002/mrm.10372.
20. Polyakova E, Mikhaylov E, Galagudza M, et al. Hyperleptinemia results in systemic inflammation and the exacerbation of ischemia-reperfusion myocardial injury. Heliyon. 2021;7e08491. doi:10.1016/j.heliyon.2021.e08491.
21. Rahmouni K. Leptin-Induced Sympathetic Nerve Activation: Signaling Mechanisms and Cardiovascular Consequences in Obesity. Curr Hypertens Rev. 2010;6(2):104-209. doi:10.2174/157340210791170994.
22. Shi Z, Pelletier NE, Wong J, et al. Leptin increases sympathetic nerve activity via induction of its own receptor in the paraventricular nucleus. Elife. 2020;9:e55357. doi:10.7554/eLife.55357.
23. Lijnen PJ, Maharani T, Finahari N, et al. Serum collagen markers and heart failure. Cardiovasc Hematol Disord Drug Targets. 2012;12(1):51-5. doi:10.2174/187152912801823147.
24. Dădârlat-Pop A, Sitar-Tăut A, Zdrenghea D, et al. Profile of Obesity and Comorbidities in Elderly Patients with Heart Failure. Clin Interv Aging. 2020;15:547-56. doi:10.2147/CIA.S248158.
25. Kuwahara K. The natriuretic peptide system in heart failure: Diagnostic and therapeutic implications. Pharmacol Ther. 2021;227:107863. doi:10.1016/j.pharmthera.2021.107863.
26. Luchner A, Schunkert H. Interactions between the sympathetic nervous system and the cardiac natriuretic peptide system. Cardiovasc Res. 2004;63(3):443-9. doi:10.1016/j.cardiores.2004.05.004.
27. Kurajoh M, Koyama H, Kadoya M, et al. Plasma leptin level is associated with cardiac autonomic dysfunction in patients with type 2 diabetes: HSCAA study. Cardiovasc Diabetol. 2015;14:117. doi:10.1186/s12933-015-0280-6.
28. Zhu T, Chen M, Wang M, et al. Association between adiponectin-to-leptin ratio and heart rate variability in new-onset paroxysmal atrial fibrillation: A retrospective cohort study. Ann Noninvasive Electrocardiol. 2022;27(2):e12896. doi:10.1111/anec.12896.
29. Bayes-Genis A, Docherty KF, Petrie MC, et al. Practical algorithms for early diagnosis of heart failure and heart stress using NT-proBNP: A clinical consensus statement from the Heart Failure Association of the ESC. Eur J Heart Fail. 2023;25(11):1891-8. doi:10.1002/ejhf.3036.
30. La Rovere MT, Pinna GD, Maestri R, et al. GISSI-HF Investigators. Autonomic markers and cardiovascular and arrhythmic events in heart failure patients: still a place in prognostication? Data from the GISSI-HF trial. Eur J Heart Fail. 2012;14(12):1410-9. doi:10.1093/eurjhf/hfs126.
31. Lin YH, Lin C, Lo MT, et al. The relationship between aminoterminal propeptide of type III procollagen and heart rate variability parameters in heart failure patients: a potential serum marker to evaluate cardiac autonomic control and sudden cardiac death. Clin Chem Lab Med. 2010;48(12):1821-7. doi:10.1515/CCLM.2010.348.
Supplementary files
- The high prevalence of obesity and associated metabolic disorders in a cohort of patients with heart failure with mildly reduced ejection fraction (HFmrEF) of ischemic origin determines the search for associations of autonomic imbalance with a biomarker profile and unfavorable structural and functional cardiac remodeling.
- We demonstrated that in patients with HFmrEF and metabolic risks, heart rate variability and turbulence indicators are associated with serum biomarkers of fibrosis, adipokines, markers of increased left ventricular filling pressure.
- The balance between adipokines and the autonomic nervous system may be part of a multifactorial mechanism affecting N-terminal pro-brain natriuretic peptide levels in obese patients with heart failure.
Review
For citations:
Lyasnikova E.A., Gareeva A.I., Muslimova V.K., Zhabina E.S., Kozlova S.N., Sitnikova M.Yu., Shlyakhto E.V. Cardiac remodeling in patients with heart failure with mildly reduced ejection fraction and metabolic disorders: association with biomarkers and autonomic nervous system parameters. Russian Journal of Cardiology. 2024;29(4):5752. (In Russ.) https://doi.org/10.15829/1560-4071-2024-5752. EDN: LMWSDJ