Preview

Russian Journal of Cardiology

Advanced search

Electrocardiographic, echocardiographic and lipid parameters in predicting obstructive coronary artery disease in patients with non-ST elevation acute coronary syndrome

https://doi.org/10.15829/1560-4071-2022-5036

Abstract

Aim. To assess the predictive potential of electrocardiographic (ECG), echocardiographic, and lipid parameters for predicting obstructive coronary artery disease (oCAD) in patients with non-ST-elevation acute coronary syndrome (NSTE-ACS) prior to invasive coronary angiography (CA).

Material and methods. This prospective observational cohort study included 525 patients with NSTE-ACS with a median age of 62 years who underwent invasive coronary angiography. Two groups were distinguished, the first of which consisted of 351 (67%) patients with oCAD (stenosis 50%), and the second — 174 (33%) without oCAD (<50%). Clinical and functional status of patients before CAG was assessed by 40 indicators. Mann-Whitney, Fisher, chi-squared, univariate logistic regression (LR) methods were used for data processing and analysis, while miltivariate LR (MLR), gradient boosting (XGBoost) and artificial neural networks (ANN) were used to develop predictive models. The quality of the models was assessed using 4 following metrics: area under the ROC curve (AUC), sensitivity (Se), specificity (Sp), and accuracy (Ac).

Results. A comprehensive analysis of ECG, echocardiography and lipid profile parameters made it possible to identify factors that had linear and non-linear association with oCAD. LR were used to determine their weight coefficients and threshold values with the highest predictive potential. The quality metrics of the best predictive algorithm based on MLR were 0,81 for AUC, 0,74 for Sp and Ac, and 0,75 for Se. The predictors of this model were 4 categorical parameters (left ventricular (LV) ejection fraction of 42-60%, global LV longitudinal systolic strain <19%, low-density lipoprotein cholesterol >3,5 mmol/l, age >55 years in men and >65 years for women).

Conclusion. The prognostic model developed on the basis of MLR made it possible to verify oCAD with high accuracy in patients with NSTE-ACS before invasive CA. Models based on XGBoost and ANN had less predictive value.

About the Authors

M. M. Tsivanyuk
Far Eastern Federal University, School of Medicine
Russian Federation

Mikhail M. Tsivanyuk.

Vladivostok.


Competing Interests:

None



B. I. Geltser
Far Eastern Federal University, School of Medicine
Russian Federation

Boris I. Geltser.

Vladivostok.


Competing Interests:

None



K. I. Shakhgeldyan
Far Eastern Federal University, School of Medicine; Vladivostok State University of Economics and Service, Institute of Information Technologies
Russian Federation

Karina I. Shakhgeldyan.

Vladivostok.


Competing Interests:

None



E. D. Emtseva
Far Eastern Federal University, School of Medicine
Russian Federation

Elena D. Yemtseva.

Vladivostok.


Competing Interests:

None



G. S. Zavalin
Vladivostok State University of Economics and Service, Institute of Information Technologies
Russian Federation

Georgiy S. Zavalin.

Vladivostok.


Competing Interests:

None



O. I. Shekunova
Far Eastern Federal University, School of Medicine
Russian Federation

Olga I. Shekunova.

Vladivostok.


Competing Interests:

None



References

1. Barbarash OL, Duplyakov DV, Zateischikov DA, et al. 2020 Clinical practice guidelines for Acute coronary syndrome without ST segment elevation. Russian Journal of Cardiology. 2021;26(4):4449. (In Russ.) doi:10.15829/1560-4071-2021-4449.

2. Sucato V, Testa G, Puglisi S, et al. Myocardial infarction with non-obstructive coronary arteries (MINOCA): Intracoronary imaging-based diagnosis and management. J Cardiol. 2021;77(5):444-51. doi:10.1016/j.jjcc.2021.01.001.

3. Sumin AN. Role of clinical evaluation in the identification of coronary obstructive disorders in patients with stable coronary artery disease. Part I. Russian Journal of Cardiology. 2019;(5):95-100. (In Russ.) doi:10.15829/1560-4071-2019-5-95-100.

4. Suzuki S, Kaikita K, Yamamoto E, et al. Role of acetylcholine spasm provocation test as a pathophysiological assessment in nonobstructive coronary artery disease. Cardiovasc Interv and Ther. 2021;36(1):39-51. doi:10.1007/s12928-020-00720-z.

5. Geltser BI, Tsivanyuk MM, Kotelnikov VN, Karpov RS. Vasospastic angina: pathophysiology and clinical significance. Cardiovascular Therapy and Prevention. 2020;19(1):99-105. (In Russ.) doi:10.15829/1728-8800-2020-1-2391.

6. Nakayama N, Kaikita K, Fukunaga T, et al. Clinical Features and Prognosis of Patients With Coronary Spasm-Induced Non-ST-Segment Elevation Acute Coronary Syndrome. Journal of the American Heart Association. 2014;3(3):e000795-e000795. doi:10.1161/jaha.114.000795.

7. Collet J, Thiele H, Barbato E, et al. ESC Scientific Document Group, 2020 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation: The Task Force for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation of the European Society of Cardiology (ESC). European Heart Journal. 2021;42(14):1289-367. doi:10.1093/eurheartj/ehaa575.

8. Pal S, Broker M, Wagner H, et al. Stress (Takotsubo) Cardiomyopathy: A Review of Its Pathophysiology, Manifestations, and Factors That Affect Prognosis. Cardiol Rev. 2021;29(4):205-9. doi:10.1097/CRD.0000000000000309.

9. Matta A, Bouisset F, Lhermusier T, et al. Coronary Artery Spasm: New Insights. Journal of Interventional Cardiology, 2020; Article ID 5894586: 1-10. doi:10.1155/2020/5894586.

10. Geltser BI, Tsivanyuk MM, Shakhgeldyan KI, et al. Machine learning for assessing the pretest probability of obstructive and non-obstructive coronary artery disease. Russian Journal of Cardiology. 2020;25(5):3802. (In Russ.) doi:10.15829/1560-4071-2020-3802.

11. Johnson KW, Torres Soto J, Glicksberg BS, et al. Artificial Intelligence in Cardiology. Journal of the American College of Cardiology. 2018;71(23):2668-79. doi:10.1016/j.jacc.2018.03.521.

12. Quesada JA, Lopez‐Pineda A, Gil‐Guillen VF, et al. Machine learning to predict cardiovascular risk. International Journal of Clinical Practice. 2019;00:e13389. doi:10.1111/ijcp.13389.

13. Kapustina AYu, Minushkina LO, Alekhin MN, et al. Left ventricular global function index as a predictor of adverse cardiovascular events in patients with acute coronary syndrome. Kardiologiia. 2021;61(8):23-31. (In Russ.) doi:10.18087/cardio.2021.8.n1508.

14. Berns SA, Shmidt EA, Klimenkova AV, et al. Using the GRACE Score to Assess Long-term Risk in Patients with Non-ST Elevation Acute Coronary Syndrome. Doctor. Ru. 2019;(2):12-8. (In Russ.) doi:10.31550/1727-2378-2019-157-2-12-18.

15. Sumin AN. Is the problem of intact coronary arteries still or is it close to solving? Russian Journal of Cardiology. 2021;26(2):4139. (In Russ.) doi:10.15829/1560-4071-2021-4139.

16. Knuuti J, Wijns W, Saraste A, et al. ESC Scientific Document Group, 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes: The Task Force for the diagnosis and management of chronic coronary syndromes of the European Society of Cardiology (ESC). European Heart Journal. 2020;41(3):407-77. doi:10.1093/eurheartj/ehz425.

17. Saushkin VV, Zavadovskiy KV. Assessment of Accuracy in Calculating Hemodynamic Parameters and Left Ventricular Mass According to ECG-Synchronized Myocardial Perfusion Scintigraphic Data: Comparison with Cardiac Multislice Computed Tomography. Journal of radiology and nuclear medicine. 2019;100(3):152-60. (In Russ.) doi:10.20862/0042-4676-2019-100-3-152-160.

18. Moustafa S, Elrabat K, Swailem F, et al. The correlation between speckle tracking echocardiography and coronary artery disease in patients with suspected stable angina pectoris. Indian Heart Journal. 2018;70(3):379-86. doi:10.1016/j.ihj.2017.09.220.

19. Schroeder J, Hamada S, Gründlinger N, et al. Myocardial deformation by strain echocardiography identifies patients with acute coronary syndrome and non-diagnostic ECG presenting in a chest pain unit: a prospective study of diagnostic accuracy. Clinical Research in Cardiology. 2015;105(3):248-56. doi:10.1007/s00392-015-0916-2.

20. Liou K, Negishi K, Ho S, et al. Detection of Obstructive Coronary Artery Disease Using Peak Systolic Global Longitudinal Strain Derived by Two-Dimensional Speckle-Tracking: A Systematic Review and Meta-Analysis. Journal of the American Society of Echocardiography. 2016;29(8):724-35.e4. doi:10.1016/j.echo.2016.03.002.

21. Geltser BI, Tsivanyuk MM, Shakhgeldyan KI, et al. Cardiometabolic risk factors in predicting obstructive coronary artery disease in patients with non-ST-segment elevation acute coronary syndrome. Russian Journal of Cardiology. 2021;26(11):4494. (In Russ.) doi:10.15829/1560-4071-2021-4494.


Supplementary files

Review

For citations:


Tsivanyuk M.M., Geltser B.I., Shakhgeldyan K.I., Emtseva E.D., Zavalin G.S., Shekunova O.I. Electrocardiographic, echocardiographic and lipid parameters in predicting obstructive coronary artery disease in patients with non-ST elevation acute coronary syndrome. Russian Journal of Cardiology. 2022;27(6):5036. (In Russ.) https://doi.org/10.15829/1560-4071-2022-5036

Views: 1696


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1560-4071 (Print)
ISSN 2618-7620 (Online)