Preview

Российский кардиологический журнал

Расширенный поиск

ВОЗМОЖНОСТИ АНАЛИЗА ПОЛИМОРФИЗМА ГЕНОВ ЛИПИДНОГО ОБМЕНА ДЛЯ ВЫЯВЛЕНИЯ ФАКТОРОВ РИСКА АТЕРОСКЛЕРОЗА

https://doi.org/10.15829/1560-4071-2014-10-53-057

Полный текст:

Аннотация

В обзоре обращено внимание этиологическим вопросам полигенных гиперлипидемий. Представлены наиболее значимые, распространенные >1% населения, генетические маркеры. Рассмотрены механизмы влияния минорных аллелей генов на развитие  гиперхолестеринемии: APOAI 75G>A (rs670), CETP (rs5882),  LIPC (rs1800588), APOE (E2/E3/E4), гипертриглицеридемии: APOA5 (rs3135506), FABP2 rs1799883, LPL rs328. Кроме того, приведены генетические маркеры, являющиеся факторами риска нарушения пищевого поведения которые разными  способами влияют на употребление  большего  количества жиров  в  ежедневном   рационе:   CD36  (rs1761667),  FTO (rs8050136),  MC4R (rs17782313). Носительство  нескольких патологических аллелей  у пациента значительно  повышает риск первичных гиперлипидемий.  Необходимы дальнейшие исследования эффекта сочетания нескольких генетических маркеров для трансляции  данных тестов как инструмента персонизированной предиктивной медицины в клиническую практику.

Об авторах

Н. В. Кох
Институт химической биологии и фундаментальной медицины СО РАН, Новосибирск
Россия
Научный сотрудник  лаборатории   персонализированной  медицины


Г. И. Лифшиц
Институт химической биологии и фундаментальной медицины СО РАН, Новосибирск
Россия
Доктор медицинских наук,  зав.  лабораторией  персонализированной медицины


Е. Н. Воронина
Институт химической биологии и фундаментальной медицины СО РАН, Новосибирск
Россия
Кандидат биологических наук,  научный сотрудник  лаборатории   фармакогеномики


Список литературы

1. Drenos F, Whittaker JC, Humphries SE. The use of meta-analysis risk estimates for candidategenes in combination to predict coronary heart disease risk. Ann Hum Genet 2007; 71: 611—9.

2. The LDL receptor mutation database http://www.ucl.ac.uk/ldlr/LOVDv.1.1.0/index. php?select_db=LDLR.

3. Lei Zhang, Feng Yan, Shengli Zhang, et al. Structural basis of transfer between lipoproteinsbycholesteryl ester transfer protein Nature Chemical Biology 2012; 342—9.

4. Ridker PM, Paré G, Parker AN. Polymorphism in the CETP gene region, HDL cholesterol, and risk of future myocardial infarction: Genomewide analysis among 18 245 initially healthy women from the Women’s Genome Health Study. Circ Cardiovasc Genet. 2009; 2(1): 26-33.

5. Sanders AE, Wang C, Katz M, et al. Association of a functional polymorphism in the cholesteryl ester transfer protein (CETP) gene with memory decline and incidence of dementia. JAMA. 2010; 303(2): 150-8.

6. Yu L, Shulman JM, Chibnik L. The CETP I405V polymorphism is associated with an increased risk of Alzheimer’s disease. Aging Cell. 2012; 11(2): 228-33.

7. Gammon CS, Minihane AM, Kruger R, et al. TaqIB polymorphism in the cholesteryl ester transfer protein (CETP) gene influences lipid responses to the consumption of kiwifruit in hypercholesterolaemic men. Br J Nutr. 2013 Nov 1: 1-8

8. Yin RX, Li YY, Liu WY, et al. Apolipoprotein Al/C3/A5 haplotypes and serum lipid levels. LipidsHealth Dis. 2011; 10: 140.

9. Al-Bustan SA, Al-Serri AE, Annice BG, et al. Re-sequencing of the APOAI promoter region and the genetic association of the -75G>A polymorphism with increased cholesterol and low density lipoprotein levels among a sample of the Kuwaiti population. BMC Med Genet. 2013;14:90

10. van Haperen R, Samyn H, van Gent T, et al. Novel roles of hepatic lipase and phospholipid transfer protein in VLDL as well as HDL metabolism. Biochim Biophys Acta. 2009; 1791(10): 1031-6

11. Isaacs A, Aulchenko YS, Hofman A, et al. Epistatic effect of cholesteryl ester transfer protein and hepatic lipase on serum high-density lipoprotein cholesterol levels. J Clin Endocrinol Metab 2007; 92: 2680—7.

12. Hui Li, Padmaja Dhanasekaran, Alexander Eric T, et al. Molecular mechanisms responsible for the differential effects of apoE3 and apoE4 on plasma lipoprotein cholesterol levels Arteriosclerosis, thrombosis, and vascular biology, 33 (2013), 687—93.

13. Ghebranious N, Ivacic L, Mallum J, et al. Detection of ApoE E2, E3 and E4 alleles using MALDI-TOF mass spectrometry and the homogeneous mass-extend technology. Nucleic Acids Res. 2005; 33 (17): e149.

14. Altenburg M, Arbones-Mainar J, Johnson L, et al. Human LDL receptor enhances sequestration of ApoE4 and VLDL remnants on the surface of hepatocytes but not their internalization in mice. Arteriosclerosis, Thrombosis, and Vascular Biology,2008; 28(6), 1104—10.

15. Morgen K, Ramirez A, Frщlich L, et al. Genetic interaction of PICALM and APOE is associated with brain atrophy and cognitive impairment in Alzheimer’s disease. Alzheimers Dement. 2014;. pii: S1552-5260(13)02912-9.

16. Gaudeta D, Me´thota J, Kastelein J. Gene therapy for lipoprotein lipase deficiency. Curr Opin Lipidol 2012, V. 23, N. 4, 23: 310—20.

17. Rensen PCN, van Dijk KW, Havekes LM. Apolipoprotein AV Low Concentration, High Impact. Arterioscler Thromb Vasc Biol.2005; 25: 2445—7.

18. Mahdi G, Lor K, Jin J, et al. The Paradox of ApoA5 Modulation of Triglycerides: Evidence from Clinical and Basic Research. Clinical biochemistry, 46 (2013), 12—9.

19. Huang XS, Zhao SP, Hu M, et al. Decreased apolipoprotein A5 is implicated in insulin resistance-related hypertriglyceridemia in obesity.Atherosclerosis. 2010; 210: 563—8.

20. Chen SN, Cilingiroglu M, Todd J, et al. Candidate genetic analysis of plasma high-density lipoprotein-cholesterol and severity of coronary atherosclerosis. BMC Med Genet. 2009; 10: 111.

21. Elosua R, Ordovas JM, Cupples LA, et al. Variants at the APOA5 locus, association with carotid atherosclerosis, and modification by obesity: the Framingham Study. J Lipid Res.2006; 47: 990—6.

22. Talmud PJ, Palmen J, Putt W, et al. Determination of the Functionality of Common APOA5 Polymorphisms. J Bio Chem. 2005: 28215—20.

23. Smith CE, Tucker KL. Apolipoprotein A5 and lipoprotein lipase interact to modulate anthropometric measures in Hispanics of Caribbean origin. Obesity. 2010; 18(2): 327-32.

24. Cross DS, Ivacic LC. Population based allele frequencies of disease associated polymorphisms in the Personalized Medicine Research Project. BMC Genet. 2010; 11: 51.

25. Mocking RJ, Lok A. Ala54Thr Fatty Acid-Binding Protein 2 (FABP2) Polymorphism in Recurrent Depression: Associations with Fatty Acid Concentrations and Waist Circumference. PLoS One. 2013; 8(12): e82980.

26. Ishimura S, Furuhashi M, Watanabe Y. Circulating levels of Fatty Acid-binding protein family and metabolic phenotype in the general population. PLoS One. 2013; 8(11): e81318.

27. Wang J, Ban MR, Zou GY, et al. Polygenic determinants of severe hypertriglyceridemia. Hum Mol Genet. 2008; 17(18): 2894-9.

28. Wittrup HH, Andersen RV, Tybjaerg-Hansen A, et al. Combined analysis of six lipoprotein lipase genetic variants on triglycerides, high-density lipoprotein, and ischemic heart disease: cross-sectional, prospective, and case-control studies from the Copenhagen City Heart Study. J Clin Endocrinol Metab.2006; 91(4): 1438—45.

29. Chen Q, Razzaghi H, Demirci FY, et al. Functional significance of lipoprotein lipase HindIIIpolymorphism associated with the risk of coronary artery disease. Atherosclerosis. 2008; 200(1): 102—8.

30. Keller KL. Genetic influences on oral fat perception and preference: Presented at the symposium “The Taste for Fat: New Discoveries on the Role of Fat in Sensory Perception, Metabolism, Sensory Pleasure and Beyond” held at the Institute of Food Technologists 2011 An. J Food Sci. 2012; 77(3): S143-7.

31. Love-Gregory L, Sherva R, Schappe T, et al. Common CD36 SNPs reduce protein expression and may contribute to a protective atherogenic profile. Hum Mol Genet. 2011; 20(1): 193-201.

32. Rać ME, Safranow K, Poncyljusz W. Molecular basis of human CD36 gene mutations. Mol Med. 13(5-6): 288-96.

33. Speakman JR, Rance KA, Johnstone AM. Polymorphisms of the FTO gene are associated with variation in energy intake, but not energy expenditure. Obesity. 2008; 16(8): 1961-5.

34. Kilpeläinen TO, Qi L, Brage S, et al. Physical activity attenuates the influence of FTO variants on obesity risk: a meta-analysis of 218,166 adults and 19,268 children. PLoS Med. 2011; 8(11): e1001116.

35. Yang J, Loos RJ, Powell JE, et al. FTO genotype is associated with phenotypic variability of body mass index. Nature, 2012; 490, 267-72.

36. Lango Allen H, Estrada K, Lettre G, et al. Hundreads of variants clustered in genomic loci and biological pathways affect human height. Nature, 2010; 467, 832-8.

37. Thorleifsson G, Walters GB, Gudbjartsson DF. Genome-wide association yields new sequence variants at seven loci that associate with measures of obesity. Nat Genet. 2009;41(1): 18-24.

38. Hsiung HM, Hertel J, Zhang XY, et al. A novel and selective beta-melanocyte-stimulating hormone-derived peptide agonist for melanocortin 4 receptor potently decreased food intake and body weight gain in diet-induced obese rats. Endocrinology. 2005; 146(12): 5257-66.

39. Thorleifsson G, Walters GB, Gudbjartsson DF, et al. Genome-wide association yields new sequence variants at seven loci that associate with measures of obesity. Nat. Genet. 2009; 41(1): 18—24.

40. Xi B, Chandak GR, Shen Y, et al. Association between common polymorphism near the MC4R gene and obesity risk: a systematic review and meta-analysis. PLoS One. 2012; 7: e45731.

41. Czerwensky Fabian, et al. Association of the common MC4R rs17782313 polymorphism with antipsychotic-related weight gain. Journal of clinical psychopharmacology.2013; 33(1): 74-9.

42. Perez-Martinez P, Garcia-Rios A, Delgado-Lista JA. Variant near the melanocortin-4 receptor gene regulates postprandial lipid metabolism in a healthy Caucasian population. Br J Nutr. 2011; 106(4): 468-71.


Для цитирования:


Кох Н.В., Лифшиц Г.И., Воронина Е.Н. ВОЗМОЖНОСТИ АНАЛИЗА ПОЛИМОРФИЗМА ГЕНОВ ЛИПИДНОГО ОБМЕНА ДЛЯ ВЫЯВЛЕНИЯ ФАКТОРОВ РИСКА АТЕРОСКЛЕРОЗА. Российский кардиологический журнал. 2014;(10):53-057. https://doi.org/10.15829/1560-4071-2014-10-53-057

For citation:


Koch N.V., Lifschitz G.I., Voronina E.N. APPROACHES TO THE LIPID METABOLISM GENES POLYMORPHYSM ANALYSIS IN SCREENING FOR ATHEROSCLEROSIS RISK FACTORS. Russian Journal of Cardiology. 2014;(10):53-057. (In Russ.) https://doi.org/10.15829/1560-4071-2014-10-53-057

Просмотров: 309


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1560-4071 (Print)
ISSN 2618-7620 (Online)