Preview

Russian Journal of Cardiology

Advanced search

Clinical decision support system for lipid metabolism disorders: relevance and potential

https://doi.org/10.15829/1560-4071-2021-4539

Abstract

Current guidelines for the management of patients with dyslipidemia are well known and easily accessible. Despite this, according to research data based on actual clinical practice, selection of optimal tactics for managing patients with dyslipidemia often causes difficulties and leads to a failure to achieve the target levels. Tools such as clinical decision support system (CDSS) can help clinicians follow current clinical guidelines, taking into account the diversity of phenotypic profiles and side effects. This review highlights the effectiveness of CDSS implementation in medical practice as a means for making decisions in managing patients with dyslipidemia, as well as presents the algorithm for CDSS for lipid metabolism disorders created by specialists of the Almazov National Medical Research Center and the University of Milan.

About the Authors

A. S. Alieva
Almazov National Medical Research Center
Russian Federation

St. Petersburg.


Competing Interests:

No



E. I. Pavlyuk
Almazov National Medical Research Center
Russian Federation

St. Petersburg.


Competing Interests:

No



E. M. Alborova
Pavlov First Saint Petersburg State Medical University
Russian Federation

St. Petersburg.


Competing Interests:

No



N. E. Zvartau
Almazov National Medical Research Center
Russian Federation

St. Petersburg.


Competing Interests:

No



A. O. Konradi
Almazov National Medical Research Center
Russian Federation

St. Petersburg.


Competing Interests:

No



A. L. Katapano
University of Milan
Italy

Milan.


Competing Interests:

No



E. V. Shlyakhto
Almazov National Medical Research Center
Russian Federation

St. Petersburg.


Competing Interests:

No



References

1. Cholesterol Treatment Trialists' (CTT) Collaboration, Baigent C, Blackwell L, Emberson J, et al. Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet. 2010;376(9753):1670-81. doi:10.1016/S0140-6736(10)61350-5.

2. Atherosclerosis and dyslipidemia. Diagnosis and correction of lipid metabolism disorders for the prevention and treatment of atherosclerosis. Russian recommendations, VII revision. 2020;1(38):7-42. (In Russ.) doi:10.34687/2219-8202.JAD.2020.01.0002.

3. Mach F, Baigent C, Catapano AL, et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Russian Journal of Cardiology. 2020;25(5):3826. (In Russ.) doi:10.15829/1560-4071-2020-3826.

4. Catapano AL, Graham I, De Backer G, et al. 2016 ESC/EAS guidelines for the management of dyslipidaemias. Russian Journal of Cardiology. 2017;(5):7-77. (In Russ.) doi:10.15829/1560-4071-2017-5-7-77.

5. Ray KK, Molemans B, Schoonen WM. EU-Wide Cross-Sectional Observational Study of Lipid-Modifying Therapy Use in Secondary and Primary Care: the DA VINCI study, European Journal of Preventive Cardiology. 2020;zwaa047. doi:10.1093/eurjpc/zwaa047.

6. Gusev AV, Pliss MA, Levin MB, Novitsky RE. Trends and forecasts of the development of medical information systems in Russia. Doctor and information technology. 2019;(2):38-49. (In Russ.)

7. Roshanov PS, Misra S, Gerstein HC, et al. Computerized clinical decision support systems for chronic disease management: a decision-maker-researcher partnership systematic review. Implement Sci. 2011;6:92. doi:10.1186/1748-5908-6-92.

8. Lyamina NP, Kotelnikova EV. Decision support system as a component of the patient-oriented model of cardiological rehabilitation. Doctor.ru. 2017;5(134):42-6. (In Russ.)

9. Garg AX, Adhikari NKJ, McDonald H, et al. Effects of Computerized Clinical Decision Support Systems on Practitioner Performance and Patient Outcomes: A Systematic Review. JAMA. 2005;293(10):1223-38. doi:10.1001/jama.293.10.1223.

10. van Wyk JT, van Wijk MA, Sturkenboom MC, et al. Electronic alerts versus on-demand decision support to improve dyslipidemia treatment: a cluster randomized controlled trial. Circulation. 2008;117(3):371-8. doi:10.1161/CIRCULATIONAHA.107.697201.

11. Zamora A, Fernandez de Bobadilla F, Carrion C, et al. VALIDA Study Group; Network of Lipid Units of Catalonia (XULA). Pilot study to validate a computer-based clinical decision support system for dyslipidemia treatment (HTE-DLP). Atherosclerosis. 2013;231(2):401-4. doi:10.1016/j.atherosclerosis.2013.09.029.

12. Gilutz H, Novack L, Shvartzman P, et al. Computerized community cholesterol control (4C): meeting the challenge of secondary prevention. Isr Med Assoc J. 2009;11(1):23-9.

13. Chen C, Chen K, Hsu CY, et al. A guideline-based decision support for pharmacological treatment can improve the quality of hyperlipidemia management. Comput Methods Programs Biomed. 2010;97(3):280-5. doi:10.1016/j.cmpb.2009.12.004.

14. van Wyk JT, van Wijk MA, Moorman PW, et al. User requirements rating and knowledge-level of general practitioners at the start of CholGate — lipid management decision support project. AMIA Annu Symp Proc. 2005;2005:1146.

15. Lobach D, Sanders GD, Bright TJ, et al. Enabling health care decisionmaking through clinical decision support and knowledge management. Evid Rep Technol Assess (Full Rep). 2012;(203):1-784.


Supplementary files

Review

For citations:


Alieva A.S., Pavlyuk E.I., Alborova E.M., Zvartau N.E., Konradi A.O., Katapano A.L., Shlyakhto E.V. Clinical decision support system for lipid metabolism disorders: relevance and potential. Russian Journal of Cardiology. 2021;26(6):4539. https://doi.org/10.15829/1560-4071-2021-4539

Views: 897


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1560-4071 (Print)
ISSN 2618-7620 (Online)