Preview

Russian Journal of Cardiology

Advanced search

Prediction of 5-year survival in patients with heart failure and implanted cardiac resynchronization therapy devices

https://doi.org/10.15829/1560-4071-2021-4409

Abstract

Aim. Based on clinical parameters and diagnostic investigations, to create a complex model of personalized selection of patients with heart failure (HF) for cardiac resynchronization therapy (CRT). To establish the diagnostic value of the created model in predicting 5-year survival.

Material and methods. The study included 141 patients with HF (men, 77,3%; women, 22,7%). The mean age of patients at the time of implantation was 60,0 [53,0; 66,0] years. All patients had New York Heart Association (NYHA) class II-IV HF, left ventricular ejection fraction (LVEF) ≤35%, and QRS ≥130 ms. Patients were randomly divided into training (n=95) and test (n=36) samples, which were comparable in main clinical and functional characteristics.

Results. The index included parameters that had a significant relationship with 5-year survival according to the Cox regression: male sex, prior myocardial infarction, hypertension, QRS <150 ms, no left bundle branch block, PR ≥200 ms with sinus rhythm/absence of radiofrequency ablation in atrial fibrillation, NYHA class III, IV HF, LVEF <30%, left ventricular end-diastolic volume ≥235,0 ml, NT-proBNP ≥2692,0 ng/ml. All variables were scored based on the в-coefficients. In the training sample, a value ≥45 points demonstrated a sensitivity of 82,4% and a specificity of 67,2% in predicting 5-year survival (AUC, 0,873; p<0,001). The index use on the test sample showed comparable results (AUC, 0,718; p=0,020; sensitivity — 71,4%, specificity — 62,5%). Also, in the training sample, the index ≥45 points was associated with1-year survival (sensitivity — 84,6%, specificity — 58,1%, AUC, 0,811; p<0,001).

Conclusion. An index of personalized selection for CRT has been created, which makes it possible to accurately predict the 5-year survival rate, as well as the 1-year survival rate, regardless of the current selection criteria.

About the Authors

A. M. Soldatova
Tyumen Cardiology Research Center, Tomsk National Research Medical Center of the Russian Academy of Sciences
Russian Federation

Tomsk.


Competing Interests:

No



V. A. Kuznetsov
Tyumen Cardiology Research Center, Tomsk National Research Medical Center of the Russian Academy of Sciences
Russian Federation

Tomsk.


Competing Interests:

No



E. A. Gorbatenko
Tyumen Cardiology Research Center, Tomsk National Research Medical Center of the Russian Academy of Sciences
Russian Federation

Tomsk.


Competing Interests:

No



T. N. Enina
Tyumen Cardiology Research Center, Tomsk National Research Medical Center of the Russian Academy of Sciences
Russian Federation

Tomsk.


Competing Interests:

No



L. M. Malishevsky
Tyumen Cardiology Research Center, Tomsk National Research Medical Center of the Russian Academy of Sciences
Russian Federation

Tomsk.


Competing Interests:

No



References

1. Mareev VYu, Fomin IV, Ageev FT, et al. Russian Heart Failure Society, Russian Society of Cardiology. Russian Scientific Medical Society of Internal Medicine Guidelines for Heart failure: chronic (CHF) and acute decompensated (ADHF). Diagnosis, prevention and treatment. Kardiologiia. 2018;58(6S):8-158. (In Russ.) doi:10.18087/cardio.2475.

2. Lacour P, Dang PL, Morris DA, et al. The effect of iron deficiency on cardiac resynchronization therapy: results from the RIDE-CRT Study. ESC Heart Fail. 2020;7(3):1072-84. doi:10.1002/ehf2.12675.

3. Soldatova AM, Kuznetsov VA, Gizatulina TP, et al. The relationship of the prolonged PR interval with the long-term survival in patients with heart failure undergoing cardiac resynchronization therapy. Russian Journal of Cardiology. 2020;25(1):3348 (In Russ.) doi:10.15829/1560-4071-2020-1-3348.

4. Feeny AK, Rickard J, Patel D, et al. Machine Learning Prediction of Response to Cardiac Resynchronization Therapy: Improvement Versus Current Guidelines. Circ Arrhythm Electrophysiol. 2019;12(7):e007316. doi:10.1161/CIRCEP.119.007316.

5. Tokodi M, Schwertner WR, Kovacs A, et al. Machine learning-based mortality prediction of patients undergoing cardiac resynchronization therapy: the SEMMELWEIS-CRT score. Eur Heart J. 2020;41(18):1747-56. doi:10.1093/eurheartj/ehz902.

6. Gasparini M, Klersy C, Leclercq C, et al. Validation of a simple risk stratification tool for patients implanted with Cardiac Resynchronization Therapy: the VALID-CRT risk score. Eur J Heart Fail. 2015;17(7):717-24. doi:10.1002/ejhf.269.

7. Providencia R, Marijon E, Barra S, et al. Usefulness of clinical risk score to predict the response to cardiac resynchronization therapy. Int J Cardiol. 2018;260:82-7. doi:10.1016/j.ijcard.2018.02.012.

8. Spinale FG, Meyer TE, Stolen CM, et al. SMART-AV Trial Investigators. Development of a biomarker panel to predict cardiac resynchronization therapy response: Results from the SMART-AV trial. Heart Rhythm. 2019;16(5):743-53. doi:10.1016/j.hrthm.2018.11.026.

9. Loutfi M, Nawar M, Eltahan S, et al. Predictors of response to cardiac resynchronization therapy in chronic heart failure patients. The Egyptian Heart Journal. 2016;68(4):227-36. doi:10.1016/j.ehj.2016.01.001.

10. Levy WC, Mozaffarian D, Linker DT, et al. The Seattle Heart Failure Model: prediction of survival in heart failure. Circulation. 2006;113(11):1424-33. doi:10.1161/ CIRCULATIONAHA.105.584102.

11. Hoke U, Mertens B, Khidir MJH, et al. Usefulness of the CRT-SCORE for Shared Decision Making in Cardiac Resynchronization Therapy in Patients With a Left Ventricular Ejection Fraction of <35. Am J Cardiol. 2017;120(11):2008-16. doi:10.1016/j.amjcard.2017.08.019.

12. van der Heijden AC, Levy WC, van Erven L, et al. Prognostic Impact of Implementation of QRS Characteristics in the Seattle Heart Failure Model in ICD and CRT-D Recipients. Pacing Clin Electrophysiol. 2016;39(6):565-73. doi:10.1111/pace.12862.

13. Regoli F, Scopigni F, Leyva F, et al. Validation of Seattle Heart Failure Model for mortality risk prediction in patients treated with cardiac resynchronization therapy. Eur J Heart Fail. 2013;15(2):211-20. doi:10.1093/eurjhf/hfs162.

14. Kang Y, Cheng L, Cui J, et al. A new score system for predicting response to cardiac resynchronization therapy. Cardiol J. 2015;22(2):179-87. doi:10.5603/CJ.a2014.0089.

15. Maass AH, Vernooy K, Wijers SC, et al. Refining success of cardiac resynchronization therapy using a simple score predicting the amount of reverse ventricular remodelling: results from the Markers and Response to CRT (MARC) study. Europace. 2018;20(2):e1-e10. doi:10.1093/europace/euw445.

16. Vegh EM, Kandala J, Januszkiewicz L, et al. A new simplified electrocardiographic score predicts clinical outcome in patients treated with CRT. Europace. 2018;20(3):492-500. doi:10.1093/europace/euw382.

17. Kydd AC, Khan FZ, Ring L, et al. Development of a multiparametric score to predict left ventricular remodelling and prognosis after cardiac resynchronization therapy. Eur J Heart Fail. 2014;16(11):1206-13. doi:10.1002/ejhf.167.


Supplementary files

Review

For citations:


Soldatova A.M., Kuznetsov V.A., Gorbatenko E.A., Enina T.N., Malishevsky L.M. Prediction of 5-year survival in patients with heart failure and implanted cardiac resynchronization therapy devices. Russian Journal of Cardiology. 2021;26(6):4409. (In Russ.) https://doi.org/10.15829/1560-4071-2021-4409

Views: 1336


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1560-4071 (Print)
ISSN 2618-7620 (Online)