Biomarkers of inflammation, parameters characterizing obesity and cardiac remodeling in patients with atrial fibrillation and metabolic syndrome
https://doi.org/10.15829/1560-4071-2021-4343
Abstract
Aim. To determine the blood level of inflammatory markers, parameters characterizing obesity and cardiac remodeling in patients with atrial fibrillation (AF) in combination with metabolic syndrome (MS).
Material and methods. This single-stage case-control study included 677 subjects aged 35 to 65 years: patients with MS (n=407), of which 128 patients with AF; comparison group — patients with AF without MS (n=75); control group — practically healthy subjects without cardiovascular diseases and metabolic disorders (n=195).
Results. It was found that the blood concentration of circulating pro-inflammatory biomarkers in patients with AF and MS is higher than in patients with AF without MS: C-reactive protein (CRP) (4,43 (2,68-4,98) and 2,33 (1,08-4,7) mg/L, p<0,0001), interleukin-6 (IL-6) (2,5 (1,28-5,13) and 1,27 (0,68-2,7) pg/ml, p<0,0001) and tumor necrosis factor-α (TNF-α) (5,18 (2,63-7,32) and 3,42 (2,115,48) pg/ml, p<0,0001). The serum CRP concentration positively correlates with left (ρ=0,451, p<0,0001) and right atrial (ρ=0,412, p<0,000) volumes, as well as with the waist circumference (ρ=0,503, p<0,001) and epicardial fat thickness (ρ=0,550, p<0,001). Plasma IL-6 and serum TNF-α levels correlated to a lesser extent with parameters characterizing atrial remodeling, but had a strong positive relationship with epicardial fat thickness. According to multivariate analysis, it was found that an increase in the epicardial fat thickness had a greater effect on an increase in blood concentration of CRP, IL-6 and TNF-α, in contrast to other parameters characterizing obesity, such as body mass index and waist circumference.
Conclusion. An increase in the blood concentration of proinflammatory biomarkers CRP, IL-6, and TNF-α is associated with cardiac remodeling and epicardial fat thickness in patients with MS and probably has a pathogenetic role in increasing the AF risk in this cohort of patients.
About the Authors
V. A. IoninRussian Federation
Ionin Valery A. — MD, PhD, Assistant Professor, Department of Internal Diseases #1
St. Petersburg
Competing Interests:
no
E. I. Baraschkova
Russian Federation
Barashkova Elizaveta I. — MD, resident, Assistant Department of Internal Diseases #1
St. Petersburg
Competing Interests:
no
E. L. Zaslavskaya
Russian Federation
Zaslavskaya Ekaterina L. — MD, PhD, Assistant, Department of Therapy # 1
St. Petersburg
Competing Interests:
no
S. E. Nifontov
Russian Federation
Nifontov Sergey E. — MD, Department, of Functional Diagnostics, Unit of Clinical Physiology and Functional Diagnostics
St. Petersburg
Competing Interests:
no
E. A. Bazhenova
Russian Federation
Bazhenova Elena A. — MD, PhD, Senior Researcher, Research Laboratory for Metabolic Syndrome, Almazov National Medical Research Centre, Assistant Professor, Department of Internal Diseases #1, Pavlov University
St. Petersburg
Competing Interests:
no
O. D. Belyaeva
Russian Federation
Belyaeva Olga D. — MD, PhD, DSc, Professor, Leading Researcher of Research Laboratory for Metabolic Syndrome, Almazov National Medical Research Centre, Professor, Department of Internal Diseases #1, Pavlov University
St. Petersburg
Competing Interests:
no
E. I. Baranova
Russian Federation
Baranova Elena E. — MD, PhD, DSc, Professor, Head of Research Laboratory for Metabolic Syndrome, Almazov National Medical Research Centre, Professor, Department of Internal Diseases #1, Pavlov University
St. Petersburg
Competing Interests:
no
References
1. Timmis A, Townsend N, Gale ChP, et al. European Society of Cardiology: cardiovascular disease statistics 2019. European Heart J. 2020;41(1):12-85. doi:10.1093/eurheartj/ehz859.
2. Hindricks G, Potpara T, Dagres N, et al. 2020 ESC Guidelines forthe diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS): The Task Force for the diagnosis and management of atrial fibrillation of the European Society of Cardiology (ESC) Developed with the special contribution of the European Heart Rhythm Association (EHRA) of the ESC. Eur Heart J. 2021;42(5);373-498. doi:10.1093/eurheartj/ehaa612.
3. Vyas V, Hunter RJ, Longhi MP, Finlay MC. Inflammation and adiposity: new frontiers in atrial fibrillation. Europace. 2020;22(11):1609-18. doi:10.1093/europace/euaa214.
4. Chamberlain AM, Agarwal SK, Ambrose M, et al. Metabolic syndrome and incidence of atrial fibrillation among blacks and whites in the Atherosclerosis Risk in Communities (ARIC) Study. Am Heart J. 2010;159(5):850-6. doi:10.1016/j.ahj.2010.02.005.
5. Boos CJ, Anderson RA, Lip GY. Is atrial fibrillation an inflammatory disorder? Eur Heart J. 2006;27(2):136-49. doi:10.1093/eurheartj/ehi645.
6. Zhou X, Dudley SC Jr. Evidence for inflammation as a driver of atrial fibrillation. Front Cardiovasc Med. 2020;7(62):1-8. doi:10.3389/fcvm.2020.00062.
7. Wu NA, Xu B, Wu L, et al. Association of inflammatory factors with occurrence and recurrence of atrial fibrillation: a meta-analysis. Int J Cardiol. 2013;169(1):62-72. doi:10.1016/j.ijcard.2013.08.078.
8. Schnabel RB, Larson MG, Yamamoto JF, et al. Relation of multiple inflammatory biomarkers to incident atrial fibrillation. Am J Cardiol. 2009;104(1):92-6. doi:10.1016/j.amjcard.2009.02.053.
9. Shkolnikova MA, Jdanov DA, Ildarova RA, et al. Atrial fibrillation among Russian men and women aged 55 years and older: prevalence, mortality, and associations with biomarkers in a population-based study. J Geriatr Cardiol. 2020;17:74-84. doi:10.11909/j.issn.16715411.2020.02.002.
10. Zhou P, Waresi M, Zhao Y, et al. Increased serum interleukin-6 level as a predictive biomarker for atrial fibrillation: a systematic review and meta-analysis. Rev Port Cardiol. 2020;39(12):723-8. doi:10.1016/j.repce.2020.07.009.
11. Nso N, Bookani KR, Metzl M, Radparvar F. Role of inflammation in atrial fibrillation: a comprehensive review of current knowledge. J Arrhythmia. 2020;37(1):1-10. doi:10.1002/joa3.12473.
12. Indulekha K, Surendar J, Mohan V. High sensitivity C-reactive protein, tumor necrosis factor-α, interleukin-6, and vascular cell adhesion molecule-1 levels in Asian Indians with metabolic syndrome and insulin resistance (CURES-105). J Diabetes Sci Technol. 2011;5(4):982-8. doi:10.1177/193229681100500421.
13. Georgakopoulos C, Vlachopoulos C, Lazaros G, Tousoulis D. Biomarkers of atrial fibrillation in metabolic syndrome. Curr Med Chemistry. 2019;26(5):898-908. doi:10.2174/0929867324666171012105528.
14. Packer M. Characterization, pathogenesis, and clinical implications of inflammationrelated atrial myopathy as an important cause of atrial fibrillation. J Am Heart Assoc. 2020;9:e015343. doi:10.1161/JAHA.119.015343.
15. Javed S, Gupta D, Lip GYH. Obesity and atrial fibrillation: making inroads through fat. Eur Heart J — Cardiovasc Pharmacother. 2021;42(1):59-67. doi:10.1093/ehjcvp/pvaa013.
16. Ionin VA, Soboleva AV, Listopad OV, et al. Galectin 3 and aldosterone in patients with atrial fibrillation and metabolic syndrome. Russian Journal of Cardiology. 2015;(4):7983. (In Russ.) doi:10.15829/1560-40712015-4-79-83.
17. Ansaldo AM, Montecucco F, Sahebkar A, et al. Epicardial adipose tissue and cardiovascular diseases. Intern J Cardiol. 2019;278:254-60. doi:10.1016/j.ijcard.2018.09.089.
18. Iacobellis G. Epicardial Adipose Tissue From Cell to Clinic. Springer. 2020. 191 p. doi:10.1007/978-3-030-40570-0. ISBN: 978-3-030-40570-0.
19. Antonopoulos AS, Antoniades C. The role of epicardial adipose tissue in cardiac biology: classic concepts and emerging roles. J Physiol. 2017;595(12):3907-17. doi:10.1113/jp273049.
20. Itani HA, Jaffa MA, Elias J, et al. Genomic and proteomic study of the inflammatory pathway in patients with atrial fibrillation and cardiometabolic syndrome. Front cardiovasc. Med. 2020;7:613271. doi:10.3389/fcvm.2020.613271.
21. Wang Z, Wang B, Li X, et al. Metabolic syndrome, high-sensitivity C-reactive protein levels and the risk of new-onset atrial fibrillation: results from the Kailuan study. Nutrition, Metab Cadiovasc Dis. 2021;31(1):102-9. doi:10.1016/J.numecd.2020.06.026.
22. Drapkina OM, Nikolaeva MV. Pathogenic mechanism of atrial fibrillation in obesity. Rational Pharmacotherapy in Cardiology. 2016;12(5):582-9. (In Russ.) doi:10.20996/1819-6446-2016-12-5-582-589.
23. Podzolkov VI, Tarzimanova AI, Gataulin RG, et al. The role of obesity in development of atrial fibrillation: current problem status. Cardiovascular Therapy and Prevention. 2019;18(4):109-14. (In Russ.) doi:10.15829/1728-8800-2019-4-109-114.
24. Srikanthan K, Feyh A, Visweshwar H, et al. Systematic review of metabolic syndrome biomarkers: a panel for early detection, management, and risk stratification in the West Virginian population. Int J Med Sci. 2016;13:25-38. doi:10.7150/ijms.13800.
25. Mazidi M, Toth PP, Banach M. C-reacive protein is associated with prevalence of the metabolic syndrome, hypertension, and diabetes mellitus in US adults. Angiology. 2018;69:438-42. doi:10.1177/0003319717729288.
26. Lee Y, Park HC, Shin JH, et al. Single and persistent elevation of C-reactive protein levels and the risk of atrial fibrillation in a general population: The Ansan-Ansung Cohort of the Korean genome and epidemiology study. Int J Cardiol. 2019;277:240-6. doi:10.1016/j.ijcard.2018.10.070.
27. Abe I, Teshima Y, Kondo H, et al. Association of fibrotic remodeling and cytokines/ chemokines content in epicardial adipose tissue with atrial myocardial fibrosis in patients with atrial fibrillation. Heart Rhythm. 2018;15(11):1717-27. doi:10.1016/j.hrthm.2018.06.025.
Supplementary files
Review
For citations:
Ionin V.A., Baraschkova E.I., Zaslavskaya E.L., Nifontov S.E., Bazhenova E.A., Belyaeva O.D., Baranova E.I. Biomarkers of inflammation, parameters characterizing obesity and cardiac remodeling in patients with atrial fibrillation and metabolic syndrome. Russian Journal of Cardiology. 2021;26(3):4343. https://doi.org/10.15829/1560-4071-2021-4343