Preview

Russian Journal of Cardiology

Advanced search

Acute coronary syndrome: how to reduce the residual inflammatory risk?

https://doi.org/10.15829/1560-4071-2020-2-3720

Abstract

Inflammatory mediators play an important role in the pathogenesis of acute coronary syndrome (ACS). The results of experimental and randomized clinical trials on the role of various inflammation inhibitors in the treatment of coronary artery disease (CAD), in particular CANTOS and COLCOT, mark a new stage that can significantly change the clinical course and outcomes of the disease. We analyze our own experience in studying this problem. There are much prospects for the use of immunomodulatory and anti-inflammatory drugs reducing the residual inflammatory risk, but additional studies are needed to determine their role in the treatment of CAD.

About the Author

V. I. Shalnev
I. I. Mechnikov North-West State Medical University
Russian Federation

St. Petersburg

ResearcherID: P-1672-2014 




References

1. Cardiovascular Prevention. Russian National Guidelines. Russ J Cardiol. 2018;23(8):7122. (In Russ.) doi:10.15829/1560-4071-2018-6-7-122.

2. Townsend N, Wilson L, Bhatnagar P, et al. Cardiovascular disease in Europe: epidemiological update-2016. Eur. Heart J. 2016;37:3232-45. doi:10.1093/eurheart/ehj334.

3. Roffi M, Patrono C, Collet JP, et al. 2015 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation: Task Force for the Management of Acute Coronary Syndromes in Patients Presenting without Persistent STSegment Elevation of the European Society of Cardiology. Eur. Heart J. 2016;37:267-315. doi:10.1093/eurheart/ehj320.

4. Ibanez B, Agawall S, Antunes M, et al. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: The Task Force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology. Eur. Heart J. 2018;39:11977. doi:10.1093/eurheart/ehj393.

5. Gale CP, Allan V, Cattle BA, et al. Trends in hospital treatments, including revascularisation, following acute myocardial infarction, 2003-2010: a multilevel and relative survival analysis for the National Institute for Cardiovascular Outcomes Research (NICOR). Heart. 2014:100(7):582-9. doi:10.1136/heartjnl-2013-304517.

6. Valgimigli M, Bueno H, Byrne R, et al. 2017 ESC Focused Update on Dual Antiplatelet Therapy in Coronary Artery Disease in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS). The Task Force for the Management of Dual Antiplatelet Therapy in Coronary Artery Disease of the European Society of Cardiology. Eur Heart J. 2018;39:213-60. doi:10.1093/eurheart/ehj419.

7. Caggegi A, Capodanno D, Capranzano P, et al. Comparison of one-year outcomes of percutaneous coronary intervention versus coronary artery bypass grafting in patients with unprotected left main coronary artery disease and acute coronary syndromes (from the CUSTOMIZE Registry). Am. J. Cardiol. 2011;108(3):355-9. doi:10.1016/j.amjcard.2011.03.050.

8. Tang EW, Wong CK, Herbison P, et al. Global Registry of Acute Coronary Events (GRACE) hospital discharge risk score accurately predicts long-term mortality post acute coronary syndrome. Am. Heart J. 2007;153:29-35.

9. Ridker P. M. Residual inflammatory risk: addressing the obverse side of the atherosclerosis prevention coin. Eur. Heart J. 2016;37:1720-2. doi:10.1093/eurheart/ehj024.

10. Raggi P, Genest J, Giles J, et al. Role of inflammation in the pathogenesis of atherosclerosis and therapeutic interventions. Atherosclerosis. 2018;276:198-208. doi:10.1016/j.atherosclerosis.2018.07.014.

11. Libby P, Ridker PM, Hansson GK. Inflammation in atherosclerosis: from pathophysiology to practice. J. Am. Coll. Cardiol. 2009;54:2129-38.

12. Kuhtina NB, Arefieva TI, Arefieva AM, et al. The expression of cytokines and hemokines in atherosclerotic plaques and internal artery surface in CHD patients. Therapeutic Arhive. 2008;4:63-9. (In Russ.)

13. Ragino YI, Chernyavskiy AM, Polonskaya YV, et al. The content of pro-inflammatory cytokines, hemoattractants and destructive metalloproteinases in different types of atherosclerotic plaques. Atherosclerosis and dyslipidemias. 2011;1:23-7. (In Russ.)

14. Ragino YI, Volkov AM, Chernyavskiy AM, et al. The stages of development of atherosclerotic lesions and types of unstable plaques: pathophysiological and histological characteristics. Russ J Cardiol. 2013;8:88-95. (In Russ.)

15. Frangogiannis N G. Regulation of inflammatory response in cardiac repair. Circulation Res. 2012;110:159-73. doi:10.1161/CIRCRESAHA.111.243162.

16. Vogel RA, Forrester JS. Cooling off hot hearts: a specific therapy for vulnerable plaque? J Am Coll Cardiol. 2013;61:411-2. doi:10.1016/j.jacc.2012.10.026.

17. Olsen AM, Fosbol EL, Lindhardsen J, et al. Long-term cardiovascular risk of nonsteroidal anti-inflammatory drug use according to time passed after first-time myocardial infarction: a nationwide cohort study. Circulation. 2012;126:1955e1963. doi:10.1161/CIRCULATIONAHA.112.113944.

18. O’Donoghue ML, Braunwald E, White HD, et al. Effect of darapladib on major coronary events after an acute coronary syndrome: the SOLID-TIMI 52 randomized clinical trial. JAMA. 2014;312:1006-15. doi:10.1001/jama.2014.11061.

19. Kitsis R, Jialal I. Limiting Myocardial Damage during Acute Myocardial Infarction by Inhibiting C-Reactive Protein. N. Engl. J. Med. 2006;355:513-6.

20. Kleveland O, Kunst G, Bratlie M, et al. Effect of a single dose of the interleukin-6 receptor antagonist tocilizumab on inflammation and troponin T release in patients with non-STelevation myocardial infarction: a double-blind, randomized, placebo-controlled phase 2 trial. Eur. Heart J. 2016;30:2406-13. doi:10.1093/eurheart/ehj171.

21. Rymer JA, Newby LK. Failure to launch: targeting inflammation in acute coronary syndromes. JACC Basic Transl Sci. 2017;2:484-97. doi:10.1016/j.jacbts.2017.07.001.

22. O’Donoghue ML, Glaser R, Cavender MA, et al. Effect of losmapimod on cardiovascular outcomes in patients hospitalized with acute myocardial infarction: a randomized clinical trial. JAMA. 2016;315:1591-9. doi:10.1001/jama.2016.3609.

23. Shalnev VI. The role of inflammatory factors in pathogenesis of atherosclerotic vascular lesions. Russian family doctor. 2005;3:4-11. (In Russ).

24. Shalnev VI, Mazurov VI, Miroshnichenko AG. The Early Start of Statin Therapy Reduces the Level of CRP and the Rate of post-AMI Angina. Acute Cardiac Care. 2006;8(Suppl.2):139-40.

25. Shalnev VI. The impact of early simvastatine therapy on C-reactive protein level, blood lipids and clinical course in acute coronary syndrome setting. Clinical Medicine. 2007;11:46-50. (In Russ.)

26. Shalnev VI, Mazurov VI. C-reactive protein in acute coronary syndrome setting: concentration in blood plasma, role in pathogenesis and impact of early immunomodulating therapy by statins. The Herald of Saint Petersburg Medical Academy of Postgraduate Education. 2011;2:73-9. (In Russ.)

27. Shalnev VI, Mazurov VI. Markers of inflammation in acute coronary syndrome: the role in pathogenesis and prognostic value. Emergency Medical Care. 2012;2:70-6. (In Russ).

28. Ridker P, MacFadyen JG, Everett BM, et al. Relationship of C-reactive protein reduction to cardiovascular event reduction following treatment with canakinumab: a secondary analysis from the CANTOS randomized controlled trial. Lancet. 2018;391:319-28. doi:10.1016/SO140-6736(17)32520-5.

29. Ridker PM, Libby P, MacFadyen JG, et al. Modulation of the interleukin-6 signalling pathway and incidence rates of atherosclerotic events and all-cause mortality: analyses from the Canakinumab Anti-inflammatory Thrombosis Outcomes Study (CANTOS). Eur. Heart J. 2018;39:3499-507. doi:10.1093/eurheart/ehj310.

30. Sager HB, Heidt T, Hulsmans M, et al. Targeting interleukin-1β reduces leukocyte production after acute myocardial infarction. Circulation. 2015;132:1880-90. doi:10.1161/CIRCULATIONAHA.115.016160.

31. Morton AC, Rothman AM, Greenwood JP, et al. The effect of interleukin-1 receptor antagonist therapy on markers of inflammation in non-ST elevation acute coronary syndromes: the MRC-ILA Heart Study. Eur. Heart J. 2015;36:377-84. doi:10.1093/eurheart/ehj272.

32. Van Tassell B, Toldo S, Mezzaroma E. Targeting interleukin-1 in heart disease. Circulation. 2013;128:1910-23. doi:10.1161/CIRCULATIONAHA.113.003199.

33. The Interleukin-6 Receptor Mendelian Randomisation Analysis (IL6R MR) Consortium. The interleukin-6 receptor as a target for prevention of coronary heart disease: a mendelian randomisation analysis. Lancet. 2012;379:1214-24. doi:10.1016/S01406736(12)60110-X.

34. Ridker PM. From C-reactive protein to interleukin-6 to interleukin-1: moving upstream to identify novel targets for atheroprotection. Circulation Res. 2016;118:145-56. doi:10.161/CIRCRESAHA.115.306656.

35. Shalnev VI. The dynamic changes of blood interleukine 6 level in patiens with acute coronary syndrome. Emergency Medical Care. 2011;1:75-80. (In Russ).

36. Ridker P, Everett B, Pradhan M, et al. for the CIRT investigators. Low-Dose Methotrexate for the Prevention of Atherosclerotic Events. New Engl. J. Med. 2019. 380(8):752-762. doi:10.1056/NEJMoa1809798. (Epub ehead of print Nov.10. 2018).

37. Weber C, von Hundelshausen P. CANTOS trial validates the inflammatory pathogenesis of atherosclerosis: setting the stage for a new chapter in therapeutic targeting. Circulation Res. 2017;121:1119-21. doi:10.1161/CIRCRESAHA.117.311984.

38. Karasava T, Takahashi M. Role of NLRP3 Inflammasomes in Atherosclerosis. J. Atherosclerosis Thrombosis. 2017;24(5):443-51. doi:10.5551/jat.RV17001.

39. Wang Z, Hu W, Lu C, et al. Targeting NLRP3 inflammasome in cardiovascular disorders. Arterioscler. Thromb. Vasc. Biol. 2018;38:2765-79. doi:10.1161/ATVBAHA.118.311916.

40. Duewell P, Kono H, Rayner KJ, et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature. 2010;464:1357-61. doi:10.1038/nature08938.

41. Toldo S, Abbate A. The NLRP3 inflammasome in acute myocardial infarction. Nat Rev Cardiol. 2018;15(4):203-14. doi:10.1038/nrcardio.2017.161.

42. Buckley L, Libby P. Inhibiting NLRP3 Inflammasome Activity in Acute Myocardial Infarction. J. Cardiovascular Pharmacology. 2019;74:297-305. doi:10.1097/FJC.0000000000000701

43. Vaidya K, Martinez G, Patel S. The Role of Colchicine in Acute Coronary Syndromes. Clinical Therapeutics. 2019; 41:11-20. doi:10.1016/j.clinthera.2018.07.023.

44. Tardif JC, Kouz S, Waters D, et al. Efficacy and Safety of Low-Dose Colchicine after Myocardial Infarction. New Engl. J. Med. 2019;381:2497-505. doi:10.1056/NEJMoa1912388.


Review

For citations:


Shalnev V.I. Acute coronary syndrome: how to reduce the residual inflammatory risk? Russian Journal of Cardiology. 2020;25(2):3720. (In Russ.) https://doi.org/10.15829/1560-4071-2020-2-3720

Views: 984


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1560-4071 (Print)
ISSN 2618-7620 (Online)