Оценка миокардиального кровотока и резерва – физиологические основы и клиническое значение перфузионной сцинтиграфии в обследовании пациентов с хроническим коронарным синдромом
https://doi.org/10.15829/1560-4071-2020-2-3649
Аннотация
В обследовании пациентов с хроническим коронарным синдромом важное значение имеют неинвазивные визуализирующие тесты, среди которых позитронная эмиссионная томография (ПЭТ) обладает наиболее высокими показателями диагностической точности и прогностической значимости. Это обусловлено возможностью данного метода оценивать миокардиальной кровоток (МК) и резерв коронарного кровотока (РКК) — физиологические процессы, обеспечивающие потребность миокарда в кислороде, как в условиях покоя, так и при нагрузке, а также поддержания достаточного кровоснабжения миокарда при наличии сужений коронарных артерий. В то же время, высокая стоимость и низкая доступность ПЭТ исследований МК и РКК, не позволяют широко использовать данный подход в клинической практике. Применение современных гамма-камер, с детекторами на основе кадмий-цинк-теллурида, может выступить альтернативой ПЭТ при невозможности проведения последней. Целью обзора является представление сведений фундаментального характера о МК и РКК, а также о современных возможностях сцинтиграфического определения данных индексов и их клинической значимости.
Об авторах
А. В. МочулаФГБНУ Томский национальный исследовательский медицинский центр Российской академии наук, Научно-исследовательский институт кардиологии
Россия
Мочула Андрей Викторович — кандидат медицинских наук, научный сотрудник лаборатории радионуклидных методов исследования
Томск
SPIN-код: 7635-6558.
Конфликт интересов: нет
А. Н. Мальцева
ФГБНУ Томский национальный исследовательский медицинский центр Российской академии наук, Научно-исследовательский институт кардиологии
Россия
Мальцева Алина Николаевна — клинический ординатор лаборатории радионуклидных методов исследования
Томск
SPIN-код: 6213-3736.
Конфликт интересов: нет
В. В. Шипулин
ФГБНУ Томский национальный исследовательский медицинский центр Российской академии наук, Научно-исследовательский институт кардиологии
Россия
Шипулин Владимир Владимирович — аспирант лаборатории радионуклидных методов исследования
Томск
SPIN-код: 8146-7942.
Конфликт интересов: нет
К. В. Завадовский
ФГБНУ Томский национальный исследовательский медицинский центр Российской академии наук, Научно-исследовательский институт кардиологии
Россия
Завадовский Константин Валерьевич — доктор медицинских наук, заведующий лабораторией радионуклидных методов исследования
Томск
SPIN-код: 5081-3495.
Конфликт интересов: нет
Список литературы
1. Knuuti J, Wijns W, Saraste A, et al. ESC Scientific Document Group, 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. Eur. Heart J. 2019. doi:10.1093/eurheartj/ehz425.
2. Knuuti J, Ballo H, Juarez-Orozco LE, et al. The performance of non-invasive tests to rule-in and rule-out significant coronary artery stenosis in patients with stable angina: A metaanalysis focused on post-test disease probability. Eur Heart J. 2018;39(35):3322-30. doi:10.1093/eurheartj/ehy267.
3. Danad I, Szymonifka J, Twisk JWR, et al. Diagnostic performance of cardiac imaging methods to diagnose ischaemia-causing coronary artery disease when directly compared with fractional flow reserve as a reference standard: A meta-analysis. Eur Heart J. 2017;38(13):991-8. doi:10.1093/eurheartj/ehw095.
4. Schindler TH. Positron-Emitting Myocardial Blood Flow Tracers and Clinical Potential. Prog Cardiovasc Dis. 2015;57(6):588-606. doi:10.1016/j.pcad.2015.01.001.
5. Driessen RS, Raijmakers PG, Stuijfzand WJ, et al. Myocardial perfusion imaging with PET. Int J Cardiovasc Imaging. 2017;33(7):1021-31. doi:10.1007/s10554-017-1084-4.
6. Hyafil F, Gimelli A, Slart RHJA, et al. EANM procedural guidelines for myocardial perfusion scintigraphy using cardiac-centered gamma cameras. Eur J Hybrid Imaging. 2019;3(1):11. doi:10.1186/s41824-019-0058-2.
7. Dodge JT Jr, Brown BG, Bolson EL, et al. Lumen diameter of normal human coronary arteries. Influence of age, sex, anatomic variation, and left ventricular hypertrophy or dilation. Circulation 1992;86:232-46.
8. Kanatsuka H, Lamping KG, Eastham CL, et al. Heterogeneous changes in epimyocardial microvascular size during graded coronary stenosis. Evidence of the microvascular site for autoregulation. Circ Res. 1990;66:389-96.
9. Cornelissen AJ, Dankelman J, VanBavel E, et al. Balance between myogenic, flowdependent, and metabolic flow control in coronary arterial tree: a model study. Am J Physiol Heart Circ Physiol. 2002;282:H2224-H2237.
10. Gould KL, Lipscomb K, Hamilton GW. Physiologic basis for assessing critical coronary stenosis. Instantaneous flow response and regional distribution during coronary hyperemia as measures of coronary flow reserve. Am J Cardiol. 1974;33:87-94.
11. Nijjer SS, de Waard GA, Sen S, et al. Coronary pressure and flow relationships in humans: phasic analysis of normal and pathological vessels and the implications for stenosis assessment: a report from the Iberian-Dutch-English (IDEAL) collaborators. Eur Heart J. 2016;37:2069-80.
12. Lee JM, Hwang D, Park J, et al. Exploring coronary circulatory response to stenosis and its association with invasive physiologic indexes using absolute myocardial blood flow and coronary pressure. Circulation. 2017;136(19):1798-808. doi:10.1161/CIRCULATIONAHA.117.029911.
13. Duncker DJ, Bache RJ. Regulation of coronary blood flow during exercise. Physiol Rev. 2008; 88(3):1009-86. doi:10.1152/physrev.00045.2006.
14. Gould KL, Johnson NP, Bateman TM, et al. Anatomic versus physiologic assessment of coronary artery disease: Role of coronary flow reserve, fractional flow reserve, and positron emission tomography imaging in revascularization decision-making. J Am Coll Cardiol. 2013:1639-53. doi:10.1016/j.jacc.2013.07.076.
15. Naya M, Murthy VL, Taqueti VR, et al. Preserved coronary flow reserve effectively excludes high-risk coronary artery disease on angiography. J Nucl Med. 2014;55(2):248-55. doi:10.2967/jnumed.113.121442.
16. Bom MJ, van Diemen PA, Driessen RS, et al. Prognostic value of [15O]H2O positron emission tomography-derived global and regional myocardial perfusion. Eur Heart J Cardiovasc Imaging. 2019. doi:10.1093/ehjci/jez258.
17. Врублевский АВ, Бощенко АА, Ицкович ИЭ, и др. Современные методы неинвазивной визуализации коронарных артерий в диагностике коронарного атеросклероза. Кардиология. 2007;47(7):83-93.
18. Бокерия ЛА, Асланиди ИП, Шавман МГ, и др. Информативность количественных показателей миокардиального кровотока и коронарного резерва по данным позитронно-эмиссионной томографии с Nаммонием, совмещенной с компьютерной томографией, в оценке функциональной значимости стенозов коронарных артерий. Креативная кардиология. 2019;13(1):17-27. doi:10.24022/1997-3187-2019-13-1-17-27.
19. Бокерия ЛА, Асланиди ИП, Шурупова ИВ, и др. Количественная неинвазивная оценка миокардиального кровотока и коронарного резерва методом динамическои Стресс-ПЭТ/КТ С 13N-аммонием в диагностике функциональной значимости стенозов коронарных артерий. Бюллетень НЦССХ им. А. Н. Бакулева РАМН. 2017;18(5):489-500. doi:10.24022/1810-0694-2017-18-5-489-500.
20. Kajander SA, Joutsiniemi E, Saraste M, et al. Clinical value of absolute quantification of myocardial perfusion with 15O-water in coronary artery disease. Circ Cardiovasc Imaging. 2011;4(6):678-84. doi:10.1161/CIRCIMAGING.110.960732.
21. Murthy VL, Naya M, Foster CR, et al. Association between coronary vascular dysfunction and cardiac mortality in patients with and without diabetes mellitus. Circulation. 2012;126(15):1858-68. doi:10.1161/CIRCULATIONAHA.112.120402.
22. Assante R, Acampa W, Zampella E, et al. Coronary atherosclerotic burden vs. coronary vascular function in diabetic and nondiabetic patients with normal myocardial perfusion: a propensity score analysis. Eur J Nucl Med Mol Imaging. 2017;44(7):1129-35. doi:10.1007/s00259-017-3671-y.
23. Gaudieri V, Acampa W, Rozza F, et al. Coronary vascular function in patients with resistant hypertension and normal myocardial perfusion: a propensity score analysis. Eur Hear J Cardiovasc Imaging. 2019;20(8):949-58. doi:10.1093/ehjci/jez025.
24. Рыжкова ДВ, Красильникова ЛА, Нифонтов Е. М., и др. Оценка функционального состояния коронарного русла методом позитроннои эмиссионном томографии с 13n-аммонием на фоне холодовой пробы. Вестник рентгенологии и радиологии. 2010;3:15-20.
25. Рыжкова ДВ, Колесниченко МГ, Болдуева СА, и др. Изучение состояния коронарной гемодинамики методом позитронной эмиссионной томографии у пациентов с кардиальным синдромом Х. Сибирский медицинский журнал (г. Томск). 2012;27(2):50-6.
26. Gupta A, Taqueti VR, van de Hoef TP, et al. Integrated Noninvasive Physiological Assessment of Coronary Circulatory Function and Impact on Cardiovascular Mortality in Patients With Stable Coronary Artery Disease. Circulation. 2017;12;136(24):2325-36. doi:0.1161/CIRCULATIONAHA.117.029992.
27. Farhad H, Dunet V, Bachelard K, et al. Added prognostic value of myocardial blood flow quantitation in rubidium-82 positron emission tomography imaging. Eur Heart J Cardiovasc Imaging. 2013;14:1203-10.
28. Ziadi MC. Myocardial flow reserve (MFR) with positron emission tomography (PET)/ computed tomography (CT): clinical impact in diagnosis and prognosis. Cardiovasc Diagn Ther. 2017;7(2):206-18. doi:10.21037/cdt.2017.04.10.
29. Лишманов ЮБ, Завадовский КВ, Ефимова ИЮ, и др. Возможности ядерной медицины в диагностике сердечно-сосудистых заболеваний. Сибирский медицинский журнал (г. Томск). 2015;30(2):21-9.
30. Wells RG, Timmins R, Klein R, et al. Dynamic SPECT measurement of absolute myocardial blood flow in a porcine model. J Nucl Med. 2014;55:1685-91. doi:10.2967/jnumed.114.139782.
31. Iida H, Eberl S, Kim K, et al. Absolute quantitation of myocardial blood flow with 201Tl and dynamic SPECT in canine: optimisation and validation of kinetic modelling. Eur J Nucl Med Mol Imaging. 2008;35:896-905.
32. Hsu B, Hu LH, Yang BH, et al. SPECT myocardial blood flow quantitation toward clinical use: a comparative study with (13)N-Ammonia PET myocardial blood flow quantitation. Eur. J. Nucl. Med. Mol. Imaging. 2017;44:117-28. doi:10.1007/s00259-016-3491-5.
33. Taki J, Fujino S, Nakajima K, et al. Tc-99m sestamibi retention characteristics during pharmacological hyperemia in human myocardium: Comparison with coronary flow reserve measured by Doppler flowire. J Nucl Med. 2001;42:1457-63.
34. Imbert L, Poussier S, Franken PR, et al. Compared performance of high-sensitivity cameras dedicated to myocardial perfusion SPECT: a comprehensive analysis of phantom and human images, J. Nucl. Med. 2012;53:1897-903. doi:10.2967/jnumed.112.107417.
35. Завадовский КВ, Мишкина АИ, Мочула АВ, и др. Методика устранения артефактов движения сердца при выполнении перфузионной сцинтиграфии миокарда. Российский электронный журнал лучевой диагностики. 2017;7(2):56-64.
36. Мочула АВ, Завадовский КВ, Лишманов ЮБ. Методика определения резерва миокардиального кровотока с использованием нагрузочной динамической однофотонной эмиссионной компьютерной томографии, Бюллетень экспериментальной биологии и медицины. 2015;160(12):845-8.
37. Ben-Haim S, Murthy VL, Breault C, et al. Quantification of Myocardial Perfusion Reserve Using Dynamic SPECT Imaging in Humans: A Feasibility Study. J Nucl Med. 2013;54:8739. doi:10.2967/jnumed.112.109652.
38. De Souza AC do AH, Goncalves BKD, Tedeschi AL, Lima RSL. Quantification of myocardial flow reserve using a gamma camera with solid-state cadmium-zinc-telluride detectors: Relation to angiographic coronary artery disease. J Nucl Cardiol. 2019. doi:10.1007/s12350-019-01775-z.
39. Han S, Kim Y-H, Ahn J-M, et al. Feasibility of dynamic stress 201Tl/rest 99mTc-tetrofosmin single photon emission computed tomography for quantification of myocardial perfusion reserve in patients with stable coronary artery disease. Eur J Nucl Med Mol Imaging. 2018;45:2173-80. doi:10.1007/s00259-018-4057-5.
40. Miyagawa M, Nishiyama Y, Uetani T, et al. Estimation of myocardial flow reserve utilizing an ultrafast cardiac SPECT: Comparison with coronary angiography, fractional flow reserve, and the SYNTAX score. Int J Cardiol. 2017;1;244:347-53. doi:10.1016/j.ijcard.2017.06.012.
41. Iguchi N, Utanohara Y, Suzuki Y, et al. Myocardial flow reserve derived by dynamic perfusion single-photon emission computed tomography reflects the severity of coronary atherosclerosis. Int J Cardiovasc Imaging. 2018;34(9):1493-501. doi:10.1007/s10554-018-1358-5.
42. Ma R, Wang L, Wu D, et al. Myocardial blood flow quantitation in patients with congestive heart failure: head-to-head comparison between rapid-rotating gantry spect and czt spect. J Nucl Cardiol. 2019. doi:10.1007/s12350-019-01621-2.
43. Bouallegue FB, Roubille F, Lattuca B, et al. SPECT myocardial perfusion reserve in patients with multivessel coronary disease: correlation with angiographic findings and invasive fractional flow reserve measurements. The journal of nuclear medicine. 2015;56(11):1712-7. doi:10.2967/jnumed.114.143164.
44. Мочула АВ, Завадовский КВ, Андреев СЛ, и др. Динамическая однофотонная эмиссионная компьютерная томография миокарда как метод идентификации многососудистого поражения коронарного русла. Вестник рентгенологии и радиологии. 2016;97(5):289-95. doi:10.20862/0042-4676-2016-97-5.
45. Zavadovsky KV, Mochula AV, Boshchenko AA, et al. Absolute myocardial blood flows derived by dynamic CZT scan vs invasive fractional flow reserve: Correlation and accuracy. J Nucl Cardiol. 2019. doi:10.1007/s12350-019-01678-z.
46. Nkoulou R, Fuchs TA, Pazhenkottil AP, et al. Absolute Myocardial Blood Flow and Flow Reserve Assessed by Gated SPECT with Cadmium-Zinc-Telluride Detectors Using 99mTc-Tetrofosmin: Head-to-Head Comparison with 13N-Ammonia PET. J Nucl Med. 2016;57:1887-92. doi:10.2967/jnumed.115.165498.
47. Giubbini R, Bertoli M, Durmo R, et al. Comparison between N13NH3-PET and 99mTcTetrofosmin-CZT SPECT in the evaluation of absolute myocardial blood flow and flow reserve. J Nucl Cardiol 2019. doi:10.1007/s12350-019-01939-x.
48. Fang Y-HD, Liu Y-C, Ho K-C, et al. Single-scan rest/stress imaging with Tc-Sestamibi and cadmium zinc telluride-based SPECT for hyperemic flow quantification: A feasibility study evaluated with cardiac magnetic resonance imaging. PLoS ONE. 2017;12(8):e0183402. doi:10.1371/journal.pone.0183402.
49. Agostini D, Roule V, Nganoa C, et al. First validation of myocardial flow reserve assessed by dynamic 99mTc-sestamibi CZT-SPECT camera: head to head comparison with 15O-water PET and fractional flow reserve in patients with suspected coronary artery disease. The WATERDAY study. Eur J Nucl Med Mol Imaging. 2018;45:1079-90. doi:10.1007/s00259018-3958-7.
50. Otaki Y, Manabe O, Miller RJH, et al. Quantification of myocardial blood flow by CZTSPECT with motion correction and comparison with 15O-water PET. J Nucl Cardiol. 2019. doi:10.1007/s12350-019-01854-1.
Рецензия
Для цитирования:
Мочула А.В., Мальцева А.Н., Шипулин В.В., Завадовский К.В. Оценка миокардиального кровотока и резерва – физиологические основы и клиническое значение перфузионной сцинтиграфии в обследовании пациентов с хроническим коронарным синдромом. Российский кардиологический журнал. 2020;25(2):3649. https://doi.org/10.15829/1560-4071-2020-2-3649
For citation:
Mochula A.V., Maltseva A.N., Shipulin V.V., Zavadovsky K.V. Evaluation of myocardial blood flow and coronary flow reserve — the physiological foundation and clinical significance of myocardial perfusion scintigraphy in the examination of patients with chronic coronary syndrome. Russian Journal of Cardiology. 2020;25(2):3649. (In Russ.) https://doi.org/10.15829/1560-4071-2020-2-3649