Preview

Russian Journal of Cardiology

Advanced search

Carbon dioxide elimination pattern in assessing the risk of an unfavorable outcome in cardiac surgery

https://doi.org/10.15829/1560-4071-2020-3566

Abstract

Aim. To assess the influence of resting partial pressure of end-tidal carbon dioxide (PetCO2) levels on the long-term results of cardiac surgery.

Materials and methods. This prospective cohort study included 454 patients with coronary artery disease who underwent elective coronary artery bypass graft surgery. Before surgery, all patients underwent pulmonary function tests, including body plethysmography, lung diffusion capacity assessment and cardiopulmonary exercise testing with the determination of ventilatory and gas exchange parameters, including PetCO2 at rest. The endpoint was the 2-year survival rate after surgery.

Results. Parameters characterizing the obstructive breathing pattern, the lung diffusion capacity, and resting PetCO2 levels had a significant predictor value in relation to long-term survival after cardiac surgery. Among the baseline clinical and functional characteristics, a significant influence on long-term results was shown by the EuroSCORE II (OR 1,69 (1,26-2,27), p=0,001). The highest sensitivity and specificity in relation to long-term mortality risk after coronary artery bypass grafting was shown by resting PetCO2 value equal to 31 mm Hg (area under the ROC curve 0,74 (0,64-0,86), p<0,001).

Conclusion. The resting PetCO2 level below 31 mm Hg in patients with coronary artery disease showed a significant effect on the increased long-term mortality risk after cardiac surgery, which is important for patients with exercise intolerance.

About the Authors

O. V. Kamenskaya
Meshalkin National Medical Research Center
Russian Federation
Novosibirsk


I. Yu. Loginova
Meshalkin National Medical Research Center
Russian Federation
Novosibirsk


A. S. Klinkova
Meshalkin National Medical Research Center
Russian Federation
Novosibirsk


D. N. Ponomarev
Meshalkin National Medical Research Center
Russian Federation
Novosibirsk


S. A. Alsov
Meshalkin National Medical Research Center
Russian Federation
Novosibirsk


V. N. Lomivorotov
Meshalkin National Medical Research Center
Russian Federation
Novosibirsk


A. M. Chernyavskiy
Meshalkin National Medical Research Center
Russian Federation
Novosibirsk


References

1. Snyder EM, Turner ST, Johnson BD. Beta2-adrenergic receptor genotype and pulmonary function in patients with heart failure. Chest. 2006;130:1527-34. doi:10.1378/chest.130.5.1527.

2. Olson TP, Beck KC, Johnson BD. Pulmonary function changes associated with cardiomegaly in chronic heart failure. J Card Fail. 2007;13:100-7. doi:1016/j.cardfail.2006.10.018.

3. Guazzi M, Arena R, Halle M, et al. 2016 Focused Update: Clinical Recommendations for Cardiopulmonary Exercise Testing Data Assessment in Specific Patient Populations. Circulation. 2016;133:e694-e711. doi:10.1161/cir.0000000000000406.

4. Wagner J, Agostoni P, Arena R, et al. The Role of Gas Exchange Variables in Cardiopulmonary Exercise Testing for Risk Stratification and Management of Heart Failure with Reduced Ejection Fraction. Am Heart J. 2018;202:116-26. doi:10.1016/j.ahj.2018.05.009.

5. Wasserman K, Hansen JE, Sue DY, et al. Principles of Exercise Testing and Interpretation: Including Pathophysiology and Clinical Applications, 4th Edition. Philadelphia: Lippincott Williams and Wilkins; 2005.

6. Arena R, Peberdy MA, Myers J, et al. Prognostic value of resting end-tidal carbon dioxide in patients with heart failure. Int J Cardiol. 2006;109(3):351-8. doi:10.1016/j.ijcard.2005.06.0329.

7. Myers J, Gujja P, Neelagaru S, et al. End-Tidal CO2 Pressure and Cardiac Performance during Exercise in Heart Failure. Med Sci Sports Exerc. 2009;41(1):19-25. doi:10.1249/mss.0b013e318184c945.

8. Coffman KE, Cheuvront SN, Salgado RM, Kenefick RW. Biological variation of resting measures of ventilation and gas exchange in a large healthy cohort. Eur J Appl Physiol. 2019;119(9):2033-40. doi:10.1007/s00421-019-04190-x.

9. Apostolakis E, Filos KS, Koletsis E, Dougenis D. Lung Dysfunction Following Cardiopulmonary Bypass. J Card Surg. 2010;25:47-55. doi:10.1111/j.15408191.2009.00823.x.

10. Gologorsky E, Gologorsky A, Salerno TA. Lung-Centered Open Heart Surgery: A Call for a Paradigm Change. Front Cardiovasc Med. 2016;12(3). doi:10.3389/fcvm.2016.00012.

11. Zhang M-Q, Liao Y-Q, Yu H, et al. Ventilation strategies with different inhaled Oxygen conceNTration during CardioPulmonary Bypass in cardiac surgery (VONTCPB): study protocol for a randomized controlled trial. Trials. 2019;20(1). doi:10.1186/s13063-0193335-2.

12. Badenes R, Lozano A, Belda FJ. Postoperative pulmonary dysfunction and mechanical ventilation in cardiac surgery. Crit Care Res Pract. 2015;2015:1-8. doi:10.1155/2015/420513.

13. Wynne R, Botti M, Tatoulis J. The trajectory of postoperative pulmonary dysfunction in adults after cardiac surgery. Chest. 2011;140(4):507A. doi:10.1378/chest.1119031.

14. Ponomarev D, Kamenskaya O, Klinkova A, et al. Chronic Lung Disease and Mortality after Cardiac Surgery: A Prospective Cohort Study. J Cardiothorac Vasc Anesth. 2018;32(5):2241-5. doi:10.1053/j.jvca.2017.12.016.

15. Groeneveld ABJ, Jansen EK, Verheij J. Mechanisms of pulmonary dysfunction after onpump and off-pump cardiac surgery: a prospective cohort study. J Cardiothorac Surg. 2007;2(1):11-7. doi:10.1186/1749-8090-2-11.


Review

For citations:


Kamenskaya O.V., Loginova I.Yu., Klinkova A.S., Ponomarev D.N., Alsov S.A., Lomivorotov V.N., Chernyavskiy A.M. Carbon dioxide elimination pattern in assessing the risk of an unfavorable outcome in cardiac surgery. Russian Journal of Cardiology. 2020;25(8):3566. (In Russ.) https://doi.org/10.15829/1560-4071-2020-3566

Views: 604


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1560-4071 (Print)
ISSN 2618-7620 (Online)