A modern view on the mechanisms of diabetic cardiomyopathy development and the its modification options
https://doi.org/10.15829/1560-4071-2019-11-142-147
Abstract
The article is an analytical review of clinical studies of structural and functional cardiac changes in patients with diabetes. Modern data on the mechanisms of the diabetic cardiomyopathy development, the options of its prevention and treatment are summarized. Particular attention is paid to the features of myocardial energy metabolism and replicative aging in this pathology, as promising targets for therapeutic interventions.
About the Authors
A. G. SorokinaRussian Federation
Moscow.
Ya. A. Orlova
Russian Federation
Moscow.
References
1. Zhou B, Lu Y, Hajifathalian K, et al. Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4.4 million participants. The Lancet. 2016;387:1513-30. doi:10.1016/S0140-6736(16)00618-8.
2. Kannel WB, Hjortland M, Castelli WP. Role of diabetes in congestive heart failure: The Framingham study. The American Journal of Cardiology. 1974;34(1):29-34. doi:10.1016/0002-9149(74)90089-7.
3. Khan H, Anker SD, Januzzi JL Jr, et al. Heart Failure Epidemiology in Patients With Diabetes Mellitus Without Coronary Heart Disease. Journal of Cardiac Failure. 2019;25(2):78-86 doi:10.1016/j.cardfail.2018.10.015.
4. MacDonald MR, Petrie MC, Varyani F, et al. Impact of diabetes on outcomes in patients with low and preserved ejection fraction heart failure: an analysis of the Candesartan in Heart failure: Assessment of Reduction in Mortality and morbidity (CHARM) programme. European Heart Journal. 2008;29(11):1377-85. doi:10.1093/eurheartj/ehn153.
5. Nichols GA, Gullion CM, Koro CE, et al. The incidence of congestive heart failure in type 2 diabetes: an update. Diabetes Care. 2004;27(8):1879-84. doi:10.2337/diacare.27.8.1879.
6. Bertoni AG, Hundley WG, Massing MW, et al. Heart failure prevalence, incidence, and mortality in the elderly with diabetes. Diabetes Care. 2004;27(3):699-703. doi:10.2337/diacare.27.3.699.
7. Rubler S, Dlugash J, Yuceoglu YZ, et al. New type of cardiomyopathy associated with diabetic glomerulosclerosis. The American Journal of Cardiology. 1972;30(6):595-602. doi:10.1016/0002-9149(72)90595-4.
8. Jia G, Hill MA, Sowers JR. Diabetic Cardiomyopathy: An Update of Mechanisms Contributing to This Clinical Entity. Circulation Research. 2018;122(4):624-38. doi:10.1161/CIRCRESAHA.117.311586.
9. Voulgari C, Papadogiannis D, Tentolouris N. Diabetic cardiomyopathy: from the pathophysiology of the cardiac myocytes to current diagnosis and management strategies. Vascular Health and Risk Management. 2010;6:883-903. doi:10.2147/VHRM.S11681.
10. Lee MMY, McMurray JJV, Lorenzo-Almorós A, et al. Diabetic cardiomyopathy. Heart. 2019;105(4):337-45. doi:10.1136/heartjnl-2016-310342.
11. Qbrezan AG. Controversial questions: “cardiomyopathy” or “myocardiodystrophy”? Vestnik of St. Petersburg University. 2014;3:192-208. (In Russ.)
12. Maack C, Lehrke M, Backs J, et al. Heart failure and diabetes: metabolic alterations and therapeutic interventions: a state-of-the-art review from the Translational Research Committee of the Heart Failure Association–European Society of Cardiology. European Heart Journal. 2018;39(48):4243-54. doi:10.1093/eurheartj/ehy596.
13. Muhammad IF, Borné Y, Östling Get, et al. Arterial Stiffness and Incidence of Diabetes: A Population-Based Cohort Study. Diabetes Care. 2017;40(12):1739-45. doi:10.2337/dc17-1071.
14. Udell JA, Cavender MA, Bhatt DL, et al. Glucose-lowering drugs or strategies and cardiovascular outcomes in patients with or at risk for type 2 diabetes: a meta-analysis of randomised controlled trials. The Lancet. Diabetes & Endocrinology. 2015;3(5):356-66. doi:10.1016/S2213-8587(15)00044-3.
15. Randle PJ, Garland PB, Hales SN, et al. The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet (London, England). 1963;1(7285):785-9. doi:10.1016/s0140-6736(63)91500-9.
16. Zhang L, Lu Y, Jiang H, et al. Additional use of trimetazidine in patients with chronic heart failure: a meta-analysis. Journal of the American College of Cardiology. 2012;59(10):913-22. doi:10.1016/j.jacc.2011.11.027.
17. Zhang L, Ding WY, Wang ZH, et al. Early administration of trimetazidine attenuates diabetic cardiomyopathy in rats by alleviating fibrosis, reducing apoptosis and enhancing autophagy. Journal of Translational Medicine. 2016;14(1):109. doi:10.1186/s12967-016-0849-1.
18. Liepinsh E, Skapare E, Svalbe B, et al. Anti-diabetic effects of mildronate alone or in combination with metformin in obese Zucker rats. Eur. J. of Pharmacology. 2011; 6589(2-3):277-83. doi:10.1016/j.ejphar.2011.02.019.
19. Scott R, O’Brien R, Fulcher G, et al. Effects of fenofibrate treatment on cardiovascular disease risk in 9,795 individuals with type 2 diabetes and various components of the metabolic syndrome: the Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) study. Diabetes Care. 2009;32(3):493-8. doi:10.2337/dc08-1543.
20. Parrinello S, Coppe JP, Krtolica A, et al. Stromal-epithelial interactions in aging and cancer: senescent fibroblasts alter epithelial cell differentiation. Journal of Cell Science. 2005;118(Pt 3):485-96. doi:10.1242/jcs.01635.
21. Katsuumi G, Shimizu I, Yoshida Y, et al. Vascular Senescence in Cardiovascular and Metabolic Diseases. Frontiers in Cardiovascular Medicine. 2018;5:18. doi:10.3389/fcvm.2018.00018.
22. Gevaert AB, Shakeri H, Leloup AJ, et al. Endothelial Senescence Contributes to Heart Failure With Preserved Ejection Fraction in an Aging Mouse Model. Circulation. Heart Failure. 2017;10(6):e003806. doi:10.1161/CIRCHEARTFAILURE.116.003806.
23. Shakeri H, Gevaert AB, Schrijvers DM, et al. Neuregulin-1 attenuates stress-induced vascular senescence. Cardiovascular Research. 2018;114(7):1041-51. doi:10.1093/cvr/cvy059.
24. Yeh JK, Wang CY. Telomeres and Telomerase in Cardiovascular Diseases. Genes. 2016;7(9):E58. doi:10.3390/genes7090058.
25. Marso SP, Daniels GH, Brown-Frandsen K, et al. Liraglutide and Cardiovascular Outcomes in Type 2 Diabetes. New England J. of Medicine. 2016;375(4):311-22. doi:10.1056/NEJMoa1603827.
26. Zinman B, Lachin JM, Inzucchi SE. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. New England Journal of Medicine. 2015;373(22):2117-28. doi:10.1056/NEJMc1600827.
27. Nikolaidis LA, Elahi D, Hentosz T, et al. Recombinant glucagon-like peptide-1 increases myocardial glucose uptake and improves left ventricular performance in conscious dogs with pacing-induced dilated cardiomyopathy. Circulation. 2004;110(8):955-61. doi:10.1161/01.CIR.0000139339.85840.DD.
28. Ipp E, Genter P, Childress K. Semaglutide and Cardiovascular Outcomes in Patients with Type 2 Diabetes. New England Journal of Medicine. 2017;376(9):890-2. doi:10.1056/NEJMc1615712.
29. Holman RR, Bethel MA, Mentz RJ, et al. Effects of Once-Weekly Exenatide on Cardiovascular Outcomes in Type 2 Diabetes. The New England Journal of Medicine. 2017;377(13):1228-39. doi:10.1056/NEJMoa1612917.
30. Margulies KB, Hernandez AF, Redfield MM, et al. Effects of Liraglutide on Clinical Stability Among Patients With Advanced Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial. JAMA. 2016;316(5):500-8. doi:10.1001/jama.2016.10260.
31. Scirica BM, Bhatt DL, Braunwald E, et al. Saxagliptin and Cardiovascular Outcomes in Patients with Type 2 Diabetes Mellitus. New England Journal of Medicine. 2013;369(14):1317-26. doi:10.1056/NEJMoa1307684.
32. Abdesselam I, Pepino P, Troalen T, et al. Time course of cardiometabolic alterations in a high fat high sucrose diet mice model and improvement after GLP-1 analog treatment using multimodal cardiovascular magnetic resonance. Journal of Cardiovascular Magnetic Resonance: Off. J. of the Society for Cardiovascular Magnetic Resonance. 2015;17:95. doi:10.1186/s12968-015-0198-x.
33. Neal B, Perkovic V, Matthews DR. Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes. N Engl J Med. 2017;377:644-57. doi:10.1056/NEJMoa1611925.
34. Wiviott SD, Raz I, Sabatine MS, et al. Dapagliflozin and Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med. 2019;380(4):347-57. doi:10.1056/NEJMoa1812389.
35. Kosiborod M, Cavender MA, Fu AZ, et al. Lower Risk of Heart Failure and Death in Patients Initiated on Sodium-Glucose Cotransporter-2 Inhibitors Versus Other Glucose-Lowering Drugs . Circulation. 2017;136(3):249-59. doi:10.1161/CIRCULATIONAHA.117.029190.
36. Sato T, Aizawa Y, Yuasa S, et al. The effect of dapagliflozin treatment on epicardial adipose tissue volume. Cardiovascular Diabetology. 2018;17:6. doi:10.1186/s12933-017-0658-8.
37. Levelt E, Gulsin G, Neubauer S, et al. Mechanisms in endocrinology: Diabetic cardiomyopathy: pathophysiology and potential metabolic interventions state of the art review. Eur. J. of Endocrinology. 2018;178(4):R127-R139. doi:10.1530/EJE-17-0724.
Review
For citations:
Sorokina A.G., Orlova Ya.A. A modern view on the mechanisms of diabetic cardiomyopathy development and the its modification options. Russian Journal of Cardiology. 2019;(11):142-147. (In Russ.) https://doi.org/10.15829/1560-4071-2019-11-142-147