Современный взгляд на механизмы развития диабетической кардиомиопатии и возможности их коррекции
https://doi.org/10.15829/1560-4071-2019-11-142-147
Аннотация
Статья представляет собой аналитический обзор клинических исследований, посвященных изучению структурных и функциональных изменений в сердце при сахарном диабете. Обобщены современные данные о механизмах развития диабетической кардиомиопатии, возможностях ее профилактики и лечения. Особое внимание уделено особенностям энергетического метаболизма миокарда и репликативного старения при этой патологии как перспективным мишеням для терапевтических вмешательств.
Ключевые слова
Об авторах
А. Г. СорокинаРоссия
Сорокина Анна Григорьевна — врач-терапевт приемного отделения, научный сотрудник отдела возраст-ассоциированных заболеваний.
Москва.
IRID: 164541088
Я. А. Орлова
Россия
Орлова Яна Артуровна — доктор медицинских наук, заведующая отделом возраст-ассоциированных заболеваний.
Москва.
IRID: 42211081
Scopus Author ID: 24503460300
Список литературы
1. Zhou B, Lu Y, Hajifathalian K, et al. Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4.4 million participants. The Lancet. 2016;387:1513-30. doi:10.1016/S0140-6736(16)00618-8.
2. Kannel WB, Hjortland M, Castelli WP. Role of diabetes in congestive heart failure: The Framingham study. The American Journal of Cardiology. 1974;34(1):29-34. doi:10.1016/0002-9149(74)90089-7.
3. Khan H, Anker SD, Januzzi JL Jr, et al. Heart Failure Epidemiology in Patients With Diabetes Mellitus Without Coronary Heart Disease. Journal of Cardiac Failure. 2019;25(2):78-86 doi:10.1016/j.cardfail.2018.10.015.
4. MacDonald MR, Petrie MC, Varyani F, et al. Impact of diabetes on outcomes in patients with low and preserved ejection fraction heart failure: an analysis of the Candesartan in Heart failure: Assessment of Reduction in Mortality and morbidity (CHARM) programme. European Heart Journal. 2008;29(11):1377-85. doi:10.1093/eurheartj/ehn153.
5. Nichols GA, Gullion CM, Koro CE, et al. The incidence of congestive heart failure in type 2 diabetes: an update. Diabetes Care. 2004;27(8):1879-84. doi:10.2337/diacare.27.8.1879.
6. Bertoni AG, Hundley WG, Massing MW, et al. Heart failure prevalence, incidence, and mortality in the elderly with diabetes. Diabetes Care. 2004;27(3):699-703. doi:10.2337/diacare.27.3.699.
7. Rubler S, Dlugash J, Yuceoglu YZ, et al. New type of cardiomyopathy associated with diabetic glomerulosclerosis. The American Journal of Cardiology. 1972;30(6):595-602. doi:10.1016/0002-9149(72)90595-4.
8. Jia G, Hill MA, Sowers JR. Diabetic Cardiomyopathy: An Update of Mechanisms Contributing to This Clinical Entity. Circulation Research. 2018;122(4):624-38. doi:10.1161/CIRCRESAHA.117.311586.
9. Voulgari C, Papadogiannis D, Tentolouris N. Diabetic cardiomyopathy: from the pathophysiology of the cardiac myocytes to current diagnosis and management strategies. Vascular Health and Risk Management. 2010;6:883-903. doi:10.2147/VHRM.S11681.
10. Lee MMY, McMurray JJV, Lorenzo-Almorós A, et al. Diabetic cardiomyopathy. Heart. 2019;105(4):337-45. doi:10.1136/heartjnl-2016-310342.
11. Обрезан А. Г. Дискуссионные вопросы кардиологии: “кардиомиопатия” или “миокардиодистрофия”? Вестник Санкт-Петербургского университета. 2014;3:192-208.
12. Maack C, Lehrke M, Backs J, et al. Heart failure and diabetes: metabolic alterations and therapeutic interventions: a state-of-the-art review from the Translational Research Committee of the Heart Failure Association–European Society of Cardiology. European Heart Journal. 2018;39(48):4243-54. doi:10.1093/eurheartj/ehy596.
13. Muhammad IF, Borné Y, Östling Get, et al. Arterial Stiffness and Incidence of Diabetes: A Population-Based Cohort Study. Diabetes Care. 2017;40(12):1739-45. doi:10.2337/dc17-1071.
14. Udell JA, Cavender MA, Bhatt DL, et al. Glucose-lowering drugs or strategies and cardiovascular outcomes in patients with or at risk for type 2 diabetes: a meta-analysis of randomised controlled trials. The Lancet. Diabetes & Endocrinology. 2015;3(5):356-66. doi:10.1016/S2213-8587(15)00044-3.
15. Randle PJ, Garland PB, Hales SN, et al. The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet (London, England). 1963;1(7285):785-9. doi:10.1016/s0140-6736(63)91500-9.
16. Zhang L, Lu Y, Jiang H, et al. Additional use of trimetazidine in patients with chronic heart failure: a meta-analysis. Journal of the American College of Cardiology. 2012;59(10):913-22. doi:10.1016/j.jacc.2011.11.027.
17. Zhang L, Ding WY, Wang ZH, et al. Early administration of trimetazidine attenuates diabetic cardiomyopathy in rats by alleviating fibrosis, reducing apoptosis and enhancing autophagy. Journal of Translational Medicine. 2016;14(1):109. doi:10.1186/s12967-016-0849-1.
18. Liepinsh E, Skapare E, Svalbe B, et al. Anti-diabetic effects of mildronate alone or in combination with metformin in obese Zucker rats. Eur. J. of Pharmacology. 2011; 6589(2-3):277-83. doi:10.1016/j.ejphar.2011.02.019.
19. Scott R, O’Brien R, Fulcher G, et al. Effects of fenofibrate treatment on cardiovascular disease risk in 9,795 individuals with type 2 diabetes and various components of the metabolic syndrome: the Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) study. Diabetes Care. 2009;32(3):493-8. doi:10.2337/dc08-1543.
20. Parrinello S, Coppe JP, Krtolica A, et al. Stromal-epithelial interactions in aging and cancer: senescent fibroblasts alter epithelial cell differentiation. Journal of Cell Science. 2005;118(Pt 3):485-96. doi:10.1242/jcs.01635.
21. Katsuumi G, Shimizu I, Yoshida Y, et al. Vascular Senescence in Cardiovascular and Metabolic Diseases. Frontiers in Cardiovascular Medicine. 2018;5:18. doi:10.3389/fcvm.2018.00018.
22. Gevaert AB, Shakeri H, Leloup AJ, et al. Endothelial Senescence Contributes to Heart Failure With Preserved Ejection Fraction in an Aging Mouse Model. Circulation. Heart Failure. 2017;10(6):e003806. doi:10.1161/CIRCHEARTFAILURE.116.003806.
23. Shakeri H, Gevaert AB, Schrijvers DM, et al. Neuregulin-1 attenuates stress-induced vascular senescence. Cardiovascular Research. 2018;114(7):1041-51. doi:10.1093/cvr/cvy059.
24. Yeh JK, Wang CY. Telomeres and Telomerase in Cardiovascular Diseases. Genes. 2016;7(9):E58. doi:10.3390/genes7090058.
25. Marso SP, Daniels GH, Brown-Frandsen K, et al. Liraglutide and Cardiovascular Outcomes in Type 2 Diabetes. New England J. of Medicine. 2016;375(4):311-22. doi:10.1056/NEJMoa1603827.
26. Zinman B, Lachin JM, Inzucchi SE. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. New England Journal of Medicine. 2015;373(22):2117-28. doi:10.1056/NEJMc1600827.
27. Nikolaidis LA, Elahi D, Hentosz T, et al. Recombinant glucagon-like peptide-1 increases myocardial glucose uptake and improves left ventricular performance in conscious dogs with pacing-induced dilated cardiomyopathy. Circulation. 2004;110(8):955-61. doi:10.1161/01.CIR.0000139339.85840.DD.
28. Ipp E, Genter P, Childress K. Semaglutide and Cardiovascular Outcomes in Patients with Type 2 Diabetes. New England Journal of Medicine. 2017;376(9):890-2. doi:10.1056/NEJMc1615712.
29. Holman RR, Bethel MA, Mentz RJ, et al. Effects of Once-Weekly Exenatide on Cardiovascular Outcomes in Type 2 Diabetes. The New England Journal of Medicine. 2017;377(13):1228-39. doi:10.1056/NEJMoa1612917.
30. Margulies KB, Hernandez AF, Redfield MM, et al. Effects of Liraglutide on Clinical Stability Among Patients With Advanced Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial. JAMA. 2016;316(5):500-8. doi:10.1001/jama.2016.10260.
31. Scirica BM, Bhatt DL, Braunwald E, et al. Saxagliptin and Cardiovascular Outcomes in Patients with Type 2 Diabetes Mellitus. New England Journal of Medicine. 2013;369(14):1317-26. doi:10.1056/NEJMoa1307684.
32. Abdesselam I, Pepino P, Troalen T, et al. Time course of cardiometabolic alterations in a high fat high sucrose diet mice model and improvement after GLP-1 analog treatment using multimodal cardiovascular magnetic resonance. Journal of Cardiovascular Magnetic Resonance: Off. J. of the Society for Cardiovascular Magnetic Resonance. 2015;17:95. doi:10.1186/s12968-015-0198-x.
33. Neal B, Perkovic V, Matthews DR. Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes. N Engl J Med. 2017;377:644-57. doi:10.1056/NEJMoa1611925.
34. Wiviott SD, Raz I, Sabatine MS, et al. Dapagliflozin and Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med. 2019;380(4):347-57. doi:10.1056/NEJMoa1812389.
35. Kosiborod M, Cavender MA, Fu AZ, et al. Lower Risk of Heart Failure and Death in Patients Initiated on Sodium-Glucose Cotransporter-2 Inhibitors Versus Other Glucose-Lowering Drugs . Circulation. 2017;136(3):249-59. doi:10.1161/CIRCULATIONAHA.117.029190.
36. Sato T, Aizawa Y, Yuasa S, et al. The effect of dapagliflozin treatment on epicardial adipose tissue volume. Cardiovascular Diabetology. 2018;17:6. doi:10.1186/s12933-017-0658-8.
37. Levelt E, Gulsin G, Neubauer S, et al. Mechanisms in endocrinology: Diabetic cardiomyopathy: pathophysiology and potential metabolic interventions state of the art review. Eur. J. of Endocrinology. 2018;178(4):R127-R139. doi:10.1530/EJE-17-0724.
Рецензия
Для цитирования:
Сорокина А.Г., Орлова Я.А. Современный взгляд на механизмы развития диабетической кардиомиопатии и возможности их коррекции. Российский кардиологический журнал. 2019;(11):142-147. https://doi.org/10.15829/1560-4071-2019-11-142-147
For citation:
Sorokina A.G., Orlova Ya.A. A modern view on the mechanisms of diabetic cardiomyopathy development and the its modification options. Russian Journal of Cardiology. 2019;(11):142-147. (In Russ.) https://doi.org/10.15829/1560-4071-2019-11-142-147