Preview

Russian Journal of Cardiology

Advanced search

The heterogeneity of lipoproteins and their role in the development of cardiovascular diseases

Abstract

The lipid hypothesis of atherosclerosis pathogenesis is based on lipid metabolism disorders and, in particular, hypercholesterolemia. The main participants of dyslipidemia are lipoproteins of various classes. Despite the use of modern lipidlowering drugs, the residual risk of cardiovascular complications in patients with dyslipidemia remains quite high. Modern biochemical and physico-chemical methods allowed demonstrating the high heterogeneity of the main classes of lipoproteins.

This review presents the analysis of modern ideas about the heterogeneity of lipoproteins, a brief description of existing approaches to the classification of lipoproteins, methods of their stratification, as well as the contribution of some subfractions of lipoproteins to the development of atherosclerosis.

About the Authors

E. A. Utkina
National Medical Research Center of Cardiology
Russian Federation

Moscow


Competing Interests:

nothing to declare



O. I. Afanasieva
National Medical Research Center of Cardiology
Russian Federation

Moscow


Competing Interests:

nothing to declare



S. N. Pokrovsky
National Medical Research Center of Cardiology
Russian Federation

Moscow


Competing Interests:

nothing to declare



References

1. Aday AW, Ridker PM. Targeting Residual Inflammatory Risk: A Shifting Paradigm for Atherosclerotic Disease. Front Cardiovasc Med. 2019;6:16. doi:10.3389/fcvm.2019.00016.

2. Nordestgaard BG. Triglyceride-Rich Lipoproteins and Atherosclerotic Cardiovascular Disease: New Insights From Epidemiology, Genetics, and Biology. Circ Res. 2016;118 (4):547-63. doi:10.1161/CIRCRESAHA.115.306249.

3. Recommendations for the treatment of hyperlipidemia in adults. A joint statement of the Nutrition Committee and the Council on Arteriosclerosis of the American Heart Association. Arteriosclerosis. 1984;4:443A-68A.

4. Hirayama S, Miida T. Small dense LDL: An emerging risk factor for cardiovascular disease. Clin Chim Acta. 2012;414:215-24.

5. Zubareva MY, Rozhkova TA, Gornyakova NB et al. Residual risk in patients treated with statins from the very hight risk group of the development atherogenic dyslipidemia. A prospective study CRISTALL part 1: purpose, objectives, design, and baseline characteristics of the included patients. The Journal of Atherosclerosis and Dyslipidemias. 2013; 1 (10):26-34. (In Russ.)

6. Nordestgaard BG, Langsted A. Lipoprotein(a) as a cause of cardiovascular disease: insights from epidemiology, genetics, and biology. J Lipid Res. 2016;57 (11):1953-75. doi:10.1194/jlr.R071233.

7. Cooney MT, Dudina A, De Bacquer D, et al. How much does HDL cholesterol add to risk estimation? A report from the SCORE Investigators. Eur J Cardiovasc Prev Rehabil. 2009;16 (3):304-14. doi:10.1097/HJR.0b013e3283213140.

8. Carnuta MG, Stancu CS, Toma L. et al. Dysfunctional high-density lipoproteins have distinct composition, diminished anti-inflammatory potential and discriminate acute coronary syndrome from stable coronary artery disease patients. Scientific reports. 2017;7:7295. doi:10.1038/s41598-017-07821-5.

9. Chung M, Lichtenstein AH, Ip S, et al. Comparability of methods for LDL subfraction determination: A systematic review. Atherosclerosis. 2009;205 (2):342-8. doi:101016/j.atherosclerosis.200812.011.

10. Pownall HJ, Gotto AM. Human Plasma Lipoprotein metabolism. In: Ballantyne CM, ed. Clinical Lipidology: A Companion to Braunwald's Heart Disease. 1st ed. Saunders. 2009:1-10.

11. Bays HE, McGovern ME. Once-daily niacin extended release/lovastatin combination tablet has more favorable effects on lipoprotein particle size and subclass distribution than atorvastatin and simvastatin. Prev Cardiol. 2003;6 (4):179-88.

12. Campos H, Blijlevens E, McNamara JR, et al. LDL particle size distribution. Results from the Framingham Offspring Study. Arterioscler Thromb. 1992;12 (12):1410-9.

13. Otvos JD. Measurement of lipoprotein subclass profiles by nuclear magnetic resonance spectroscopy. Clin Lab. 2002;48 (3-4):171-80.

14. Utkina EA, Afanasyeva OI, Ezhov MV et al. Association between different lipoprotein subfractions and coronary atherosclerosis in middle-aged men on statin therapy. Kardiologicheskij Vestnik. 2014;9 (1):68-76. (In Russ.

15. Warnick GR, McNamara JR, Boggess CN, et al. Polyacrylamide gradient gel electrophoresis of lipoprotein subclasses. Clin Lab Med. 2006;26 (4):803-46. doi:10.1016/j.cll.2006.07.005.

16. Kulkarni KR. Cholesterol profile measurement by vertical auto profile method. Clin Lab Med. 2006;26 (4):787-802. doi:10.1016/j.cll.2006.07.004.

17. Mikhailidis DP, Elisaf M, Rizzo M, et al. “European panel on low density lipoprotein (LDL) subclasses”: a statement on the pathophysiology, atherogenicity and clinical significance of LDL subclasses. Curr Vasc Pharmacol. 2011;9 (5):533-71.

18. Hoefner DM, Hodel SD, O'Brien JF, et al. Development of a rapid, quantitative method for LDL subfractionation with use of the Quantimetrix Lipoprint LDL System. Clin Chem. 2001;47 (2):266-74.

19. Utkina EA, Afanasieva OI, Ezhov MV, et al. The effect of increased concentration of lipoprotein(a) on identification of sub-faction of lipoproteins using native electrophoresis technique. Clinical Laboratory Diagnostics. 2016;61 (8):461-6. (In Russ.)

20. Aru V, Lamb C, Khakimov B, et al. Quantification of lipoprotein profiles by nuclear magnetic resonance spectroscopy and multivariate data analysis. TrAC Trends in Analytical Chemistry. 2017;94:210-9.

21. Dallinga-Thie GM, Kroon J, Boren J, Chapman MJ. Triglyceride-Rich Lipoproteins and Remnants: Targets for Therapy? Curr Cardiol Rep. 2016;18 (7):67 doi:10.1007/s11886-016-0745-6.

22. Chapman MJ, Ginsberg HN, Amarenco P, et al. Triglyceride-rich lipoproteins and high-density lipoprotein cholesterol in patients at high risk of cardiovascular disease: evidence and guidance for management. Eur Heart J. 2011;32 (11):1345-61. doi:10.1093/eurheartj/ehr112.

23. Takahashi S. Triglyceride Rich Lipoprotein -LPL-VLDL Receptor and Lp(a) -VLDL Receptor Pathways for Macrophage Foam Cell Formation. J Atheroscler Thromb. 2017;24 (6):552-9. doi:10.5551/jat.RV17004.

24. Taskinen MR, Adiels M, Westerbacka J, et al. Dual metabolic defects are required to produce hypertriglyceridemia in obese subjects. Arterioscler Thromb Vasc Biol. 2011;31:2144-50.

25. Lewis GF, Xiao C, Hegele RA. Hypertriglyceridemia in the genomic era: a new paradigm. Endocr Rev. 2015;36:131-47.

26. Ozerova IN, Metelskaya VA, Perova NV, et al. Relationship of low densities lipoprotein subfractions with triglycerides level in patients with different grade of coronary arteries stenosis. The Journal of Atherosclerosis and Dyslipidemias. 2014;2:33-7. (In Russ.)

27. Srisawasdi P, Vanavanan S, Rochanawutanon M, et al. Heterogeneous properties of intermediate- and low-density lipoprotein subpopulations. Clin Biochem. 2013;46 (15):1509-15. doi:10.1016/j.clinbiochem.2013.06.021.

28. Afanasieva OI, Utkina EA, Artemieva NV, et al. Elevated Lipoprotein(a) Cоcentration and Presence of Subfractions of Small Dense Low Density Lipoproteins as Independent Factors of Risk of Ischemic Heart Disease. Kardiologiia. 2016;56 (6):5-11. doi:10.18565/cardio.2016.6.5-11. (In Russ.) doi: 10.18565/cardio.2016.6.5-11.

29. Utkina EA, Afanasieva OI, Afanasieva MI, et al. Subfractions of atherogenic apoB-lipoproteides in patients with severe hypercholesterolemia. Cardiovascular Therapy and Prevention. 2017;16 (4):45-9. (In Russ.) doi:10.15829/1728-8800-2017-4-45-49.

30. Krauss RM, Wojnooski K, Orr J, et al. Changes in lipoprotein subtraction concentration and composition in healthy individuals treated with the CETP inhibitor anacetrapib. J Lipid Res. 2012;53 (3):540-7 doi:10.1194/jlr.M018010.

31. Hoogeveen RC, Gaubatz JW, Sun Wet, al. Small dense low-density lipoprotein-cholesterol concentrations predict risk tor coronary heart disease: the Atherosclerosis Risk In Communities (ARIC) study. Arterioscler Thromb Vasc Biol. 2014;34 (5): 1069-77. doi:10.1161/ATVBAHA.114.303284.

32. Berneis KK, Krauss RM. Metabolic origins and clinical significance ot LDL heterogeneity. J Lipid Res. 2002;43 (9):1363-79.

33. Kei AA, Filippatos TD, Tsimihodimos V, et al. A review ot the role ot apolipoprotein C-II in lipoprotein metabolism and cardiovascular disease. Metabolism. 2012;61 (7):906-21. doi:10.1016/j.metabol.2011.12.002.

34. Sokolov EI, Perova NV, Shchukina GN. Density Lipoprotein Particles: Mechanisms Ot Formation, Atherogenic Properties, Possibilities ot Moditication Ot Their Content in Blood Plasma. Kardiologiia. 2005;10:91-6. (In Russ.)

35. Sacks FM, Campos H. Clinical review 163: Cardiovascular endocrinology: Low-density lipoprotein size and cardiovascular disease: a reappraisal. J Clin Endocrinol Metab. 2003;88 (10):4525-32.

36. Myers GL, Christenson RH, Cushman M, et al. NACB LMPG Committee Members, National Academy ot Clinical Biochemistry Laboratory Medicine Practice guidelines: emerging biomarkers tor primary prevention ot cardiovascular disease. Clin Chem 2009;55:378-84. doi:10.1373/clinchem.2008.115899.

37. Catapano AL, Graham I, De Backer G, et al. 2016 ESC/EAS Guidelines tor the Management ot Dyslipidaemias. Eur Heart J. 2016;37 (39):2999-3058. doi:10.1093/eurheartj/ehw272.

38. Kjellmo CA, Hovland A, Lappegard KT. CVD Risk Stratitication in the PCSK9 Era: Is There a Role tor LDL Subtractions? Diseases. 2018;6 (2). pii: E45. doi:10.3390/diseases6020045.

39. Metelskaya VA. Multimarker diagnostic panels tor atherosclerosis. Russian Journal ot Cardiology. 2018; 23 (8):65-72. (In Russ.)

40. Camont L, Chapman MJ, Kontush A. Biological activities ot HDL subpopulations and their relevance to cardiovascular disease. Trends Mol Med. 2011;17 (10):594-603. doi:10.1016/j.molmed.2011.05.013.

41. Asztalos BF, Tani M, Schaeter EJ. Metabolic and tunctional relevance ot HDL subspecies. Curr Opin Lipidol. 2011;22 (3):176-85. doi:10.1097/MOL.0b013e3283468061.

42. Mani P, Rohatgi A. Niacin Therapy, HDL Cholesterol, and Cardiovascular Disease: Is the HDL Hypothesis Detunct? Curr Atheroscler Rep. 2015;17 (8):43. doi:10.1007/s11883-015-0521-x.

43. Kosmas CE, Martinez I, Sourlas Aet al. High-density lipoprotein (HDL) tunctionality and its relevance to atherosclerotic cardiovascular disease. Drugs Context. 2018;7:212525. doi:10.7573/dic.212525.eCollection 2018.

44. Krychtiuk KA, Kastl SP, Ptattenberger S. Small high-density lipoprotein is associated with monocyte subsets in stable coronary artery disease. Atherosclerosis. 2014;237 (2):589-96. doi:10.1016/j.atherosclerosis.2014.10.015.

45. Elbaz M, Faccini J, Bongard V. High-density lipoprotein subclass protile and mortality in patients with coronary artery disease: Results trom the GENES study. Arch Cardiovasc Dis. 2016;109 (11):607-17 doi:10.1016/j.acvd.2016.04.007.

46. Riwanto M, Rohrer L, von Eckardstein A, Landmesser U. Dystunctional HDL: From Structure-Function-Relationships to Biomarkers. Handb Exp Pharmacol. 2015; 224:33766. doi:10.1007/978-3-319-09665-0_10.


Review

For citations:


Utkina E.A., Afanasieva O.I., Pokrovsky S.N. The heterogeneity of lipoproteins and their role in the development of cardiovascular diseases. Russian Journal of Cardiology. 2019;(5):82-89. (In Russ.)

Views: 975


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1560-4071 (Print)
ISSN 2618-7620 (Online)