Preview

Российский кардиологический журнал

Расширенный поиск

Роль дисметаболизма кальция в патогенезе сердечно-сосудистых заболеваний

https://doi.org/10.15829/1560-4071-2019-9-78-85

Аннотация

В обзоре представлены данные о причинах дисрегуляции метаболизмакальция и его ассоциации с основными элементами сердечно-сосудистого континуума. Особое внимание уделялось его роли в регуляции эндотелиальной функции, системного воспаления, сократительной способности миокарда, обмена липидов и углеводов, нарушение которых обусловливает инициацию и прогрессирование таких заболеваний, как эссенциальная гипертензия и хроническая сердечная недостаточность. Также систематизированы данные о роли и способах коррекции дисметаболизмакальция в профилактике и лечении данных патологий.

Об авторах

Д. Э. Майлян
Государственная образовательная организация высшего профессионального образования Донецкий национальный медицинский университет имени М. Горького
Украина

Майлян Давид Эдуардович — ассистент кафедры внутренних болезней № 1

Донецк

SPIN-код: 3757-9505

Конфликт интересов: Конфликт интересов не заявлен.


В. В. Коломиец
Государственная образовательная организация высшего профессионального образования Донецкий национальный медицинский университет имени М. Горького
Украина

Коломиец Виктория Владимировна — доктор медицинских наук, профессор, заведующий кафедрой внутренних болезней № 1

Донецк

SPIN-код: 1971-0071

Конфликт интересов: Конфликт интересов не заявлен.


Список литературы

1. Россия в цифрах. 2018: Краткий статистический сборник. Москва: Росстат, 2018. 522 c. ISBN 978-5-89476-450-4.

2. Waldman T, Sarbaziha R, Merz CN, Shufelt C. Calcium supplements and cardiovascular disease: A review. Am J Lifestyle Med. 2015;9(4):298-307. doi:10.1177/1559827613512593.

3. Blaine J, Chonchol M, Levi M. Renal control of calcium, phosphate, and magnesium homeostasis. Clin J Am Soc Nephrol. 2015;10:1257-72. doi:10.2215/CJN.09750913.

4. Keller J, Schinke T. The role of the gastrointestinal tract in calcium homeostasis and bone remodeling. Osteoporos Int. 2013;24:2737-48. doi:10.1007/s00198-013-2335-4.

5. Ross AC, Manson JE, Abrams SA, Aloia JF. The 2011 report on dietary reference intakes for calcium and vitamin D from the Institute of Medicine: what clinicians need to know. J Clin Endocrinol Metab. 2011;96(1):53-8. doi:10.1210/jc.2010-2704.

6. Goodman WG, Quarles LD. Development and progression of secondary hyperparathyroidism in chronic kidney disease: Lessons from molecular genetics. Kidney Int. 2008;74:276-88. doi:10.1038/sj.ki.5002287.

7. Trehan N. Vitamin D deficiency. Crit Pathw Cardiol. 2017;16(3):109-18. doi:10.1097/HPC.0000000000000122.

8. Felsenfeld A, Rodriguez M, Levine B. New insights in regulation of calcium homeostasis. Curr Opin Nephrol Hypertens. 2013;22:371-6. doi:10.1097/MNH.0b013e328362141e.

9. Houillier P. Calcium-sensing in the kidney. Curr Opin Nephrol Hypertens. 2013;22:566-71. doi:10.1097/MNH.0b013e328363ff5f.

10. Toka HR, Al-Romaih K, Koshy JM. Deficiency of the calcium-sensing receptor in the kidney causes parathyroid hormone-independent hypocalciuria. J Am Soc Nephrol. 2012;23:1879-90. doi:10.1681/ASN.2012030323.

11. Infante M, Fabi A, Cognetti F. RANKL/RANK/OPG system beyond bone remodeling: involvement in breast cancer and clinical perspectives. J Exp Clin Cancer Res. 2019;38(1):12. doi:10.1186/s13046-018-1001-2.

12. Torres MR, Ferreira TS, Carvalho DC, et al. Dietary calcium intake and its relationship with adiposity and metabolic profile in hypertensive patients. Nutrition. 2011;27(6):666-71. doi:10.1016/j.nut.2010.07.012.

13. Puntus T, Schneider B, Meran J. Influence of age and gender on associations of body mass index with bone mineral density, bone turnover markers and circulating calcium-regulating and bone-active sex hormones. Bone. 2011;49:824-9. doi:10.1016/j.bone.2011.06.003.

14. Hae-Jeung L, Jang-ik C. Intakes of Dairy Products and Calcium and Obesity in Korean Adults: Korean National Health and Nutrition Examination Surveys 2007-2009. PLoS One. 2014;9(6):e99085. doi:10.1371/journal.pone.0099085.

15. Lorenzo C, Hanley AJ, Rewers MJ, et al. Calcium and phosphate concentrations and future development of type 2 diabetes: the Insulin Resistance Atherosclerosis Study. Diabetologia. 2014;57(7):1366-74. doi:10.1007/s00125-014-3241-9.

16. Pittas AG, Lau J, Hu FB, et al. The role of vitamin D and calcium in type 2 diabetes. A systematic review and meta-analysis. J Clin Endocrinol Metab. 2007;92:2017-29. doi:10.1210/jc.2007-0298.

17. Shalileh M, Shidfar F, Haghani H, et al. The influence of calcium supplement on body composition, weight loss and insulin resistance in obese adults receiving low calorie diet. J Res Med Sci. 2010;15(4):191-201.

18. Balu D, Ouyang J, Parakhia RA, et al. Ca2+ effects on glucose transport and fatty acid oxidation in L6 skeletal muscle cell cultures. Biochem Biophys Rep. 2016;5:365-73. doi:10.1016/j.bbrep.2016.01.007.

19. Heshmati J, Sepidarkish M, Namazi N, et al. Impact of Dietary Calcium Supplement on Circulating Lipoprotein Concentrations and Atherogenic Indices in Overweight and Obese Individuals: A Systematic Review. J Diet Suppl. 2018;21:1-11. doi:10.1080/19390211.2018.1440685.

20. Bolland MJ, Grey A, Avenell A, et al. Calcium supplements with or without vitamin D and risk of cardiovascular events: reanalysis of the Women’s Health Initiative limited access dataset and meta-analysis. BMJ. 2011;342:d2040. doi:10.1136/bmj.d2040.

21. Ridker PM, Thuren T, Zalewski A, et al. Interleukin-1β inhibition and the prevention of recurrent cardiovascular events: rationale and design of the Canakinumab Antiinflammatory Thrombosis Outcomes Study. Am Heart J. 2011;162(4):597-605. doi:10.1016/j.ahj.2011.06.012.

22. Stancliffe RA, Thorpe T, Zemel MB. Dairy attentuates oxidative and inflammatory stress in metabolic syndrome. Am J Clin Nutr. 2011;94(2):422-30. doi:10.3945/ajcn.111.013342.

23. VanMierlo LA, Arends LR, Streppel MT. Blood pressure response to calcium supplementation: a meta-analysis of randomized controlled trials. J Hum Hypertens. 2006;20:571-80.

24. Reid IR, Ames R, Mason B, Bolland MJ. Effects of calcium supplementation on lipids, blood pressure, and body composition in healthy older men: a randomized controlled trial. Am J Clin Nutr. 2010;91(1):131-9. doi:10.1038/sj.jhh.1002038

25. Cormick G, Ciapponi A, Cafferata ML, et al. Calcium supplementation for prevention of primary hypertension. Cochrane Database Syst Rev. 2015;6:CD010037. doi:10.1002/14651858.CD010037.

26. Molina CE, Abu-Taha IH, Wang Q. Profibrotic, Electrical, and Calcium-Handling Remodeling of the Atria in Heart Failure Patients With and Without Atrial Fibrillation. Front Physiol. 2018;9:1383. doi:10.3389/fphys.2018.01383.

27. Vinogradova TM, Kobrinsky E, Lakatta EG. Dual Activation of Phosphodiesterases 3 and 4 Regulates Basal Spontaneous Beating Rate of Cardiac Pacemaker Cells. Front Physiol. 2018;9:1301. doi:10.3389/fphys.2018.01301.

28. Maier LS. Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) in the heart. Adv Exp Med Biol. 2012;740:685-702. doi:10.1007/978-94-007-2888-2_30.

29. Sossalla S, Fluschnik N. Inhibition of elevated Ca2+/ calmodulin-dependent protein kinase II improves contractility in human failing myocardium. CircRes. 2010;107(9):1150-61. doi:10.1161/CIRCRESAHA.110.220418.

30. Mora MT, Ferrero JM, Gomez JF, et al. Ca2+ Cycling Impairment in Heart Failure Is Exacerbated by Fibrosis: Insights Gained From Mechanistic Simulations. Front Physiol. 2018;9:1194. doi:10.3389/fphys.2018.01194.

31. Singh RM, Cummings E, Pantos C. Protein kinase C and cardiac dysfunction: a review. Heart Fail Rev. 2017 Nov;22(6):843-59. doi:10.1007/s10741-017-9634-3.

32. Lou Q, Fedorov VV, Glukhov AV. Transmural heterogeneity and remodeling of ventricular excitation-contraction coupling in human heart failure. Circulation. 2011;123:1881-90. doi:10.1161/CIRCULATIONAHA.110.989707.

33. Radford LT, Bolland MJ, Mason B. The Auckland calcium study: 5-year post-trial follow-up. Osteoporos Int. 2014;25(1):297-304. doi:10.1007/s00198-013-2526-z.

34. Bolland MJ, Avenell A, Baron JA. Effect of calcium supplements on risk of myocardial infarction and cardiovascular events: meta-analysis. BMJ. 2010;341:c3691. doi:10.1136/bmj.c3691.

35. Lewis JR, Zhu K, Thompson PL, Prince RL. The effects of 3 years of calcium supplementation on common carotid artery intimal medial thickness and carotid atherosclerosis in older women: an ancillary study of the CAIFOS randomized controlled trial. J Bone Miner Res. 2014;29(3):534-41. doi:10.1002/jbmr.2117.

36. Challoumas D, Stavrou A, Pericleous A. Effects of combined vitamin D — calcium supplements on the cardiovascular system: should we be cautious? Atherosclerosis. 2015;238(2):388-98. doi:10.1016/j.atherosclerosis.2014.12.050.

37. Zittermann A et al. Calcium supplementation and vitamin D: a trigger for adverse cardiovascular events? Future Cardiol. 2011;7(6):725-7. doi:10.2217/fca.11.65.

38. Donneyong MM. Risk of heart failure among postmenopausal women: a secondary analysis of the randomized trial of vitamin D plus calcium of the women’s health initiative. Circ Heart Fail. 2015;8(1):49-56. doi:10.1161/CIRCHEARTFAILURE.114.001738.

39. Alexander RT, Dimke H. Effect of diuretics on renal tubular transport of calcium and magnesium. Am J Physiol Renal Physiol. 2017;312(6):998-1015. doi:10.1152/ajprenal.00032.2017.

40. Shan J, Betzenhauser MJ, Kushnir A. Role of chronic ryanodine receptor phosphorylation in heart failure and beta-adrenergic receptor blockade in mice. J Clin Invest. 2010;120:4375-87. doi:10.1172/JCI37649.

41. Currie S, Elliott EB. Two candidates at the heart of dysfunction: The ryanodine receptor and cal cium/calmodulin protein kinase II as potential targets for therapeutic intervention-An in vivo perspective. Pharmacol Ther. 2011;131:204-20. doi:10.1016/j.pharmthera.2011.02.006.

42. Chen B, Li Y, Jiang S, Xie YP. beta-Adrenergic receptor antagonists ameliorate myocyte T-tubule remodeling following myocardial infarction. FASEB J. 2012;26:2531-7. doi:10.1096/fj.11-199505.

43. Maier LS, Layug B, Karwatowska-Prokopczuk E. RAnoLazIne for the treatment of diastolic heart failure in patients with preserved ejection fraction: the RALI-DHF proof-of-concept study. JACC Heart Fail. 2013;1:115-22. doi:10.1016/j.jchf.2012.12.002.

44. Orstavik O, Ata SH, Riise J. Inhibition of phosphodiesterase-3 by levosimendan is sufficient to account for its inotropic effect in failing human heart. Br J Pharmacol. 2014;171(23):5169-81. doi:10.1111/bph.12647.

45. Teerlink JR, Metra M, Zaca V. Agents with inotropic properties for the management of acute heart failure syndromes. Traditional agents and beyond. Heart Fail Rev. 2009;14(4):243–53. doi:10.1007/s10741-009-9153-y.


Рецензия

Для цитирования:


Майлян Д.Э., Коломиец В.В. Роль дисметаболизма кальция в патогенезе сердечно-сосудистых заболеваний. Российский кардиологический журнал. 2019;(9):78-85. https://doi.org/10.15829/1560-4071-2019-9-78-85

For citation:


Mailian D.E., Kolomiets V.V. The role of calcium metabolism dysregulation in the pathogenesis of cardiovascular diseases. Russian Journal of Cardiology. 2019;(9):78-85. (In Russ.) https://doi.org/10.15829/1560-4071-2019-9-78-85

Просмотров: 1610


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1560-4071 (Print)
ISSN 2618-7620 (Online)