ГЕНЕТИЧЕСКИЕ ОСНОВЫ РЕЗИСТЕНТНОСТИ К КЛОПИДОГРЕЛЮ: СОВРЕМЕННОЕ СОСТОЯНИЕ ПРОБЛЕМЫ
https://doi.org/10.15829/1560-4071-2015-10-92-98
Аннотация
Антиагрегантная терапия занимает одну из ведущих позиций в фармакотерапии пациентов с поражением коронарных, церебральных и периферических артерий. Стандартом лечения больных с острым коронарным синдромом является двойная антиагрегантная терапия: ацетилсалициловая кислота в сочетании с блокатором P2Y12-рецепторов. Некоторые генетические особенности пациентов могут приводить к формированию резистентности к антитромбоцитарной терапии с развитием тромботических осложнений. Данный обзор литературы призван акцентировать внимание на ряде фармакогенетических особенностей пациентов, приводящих к резистентности антиагрегантной терапии клопидогрелем.
Ключевые слова
Об авторах
К. Б. МирзаевРоссия
Интерн кафедры клинической фармакологии и терапии
Д. А. Сычев
Россия
Доктор медицинских наук, профессор, зав. кафедрой клинической фармакологии и терапии
Д. А. Андреев
Россия
Доктор медицинских наук, профессор кафедры неотложной кардиологии
Список литературы
1. Ruggeri ZM. Platelets in atherothrombosis. Nature Med 2002; 8: 1227-34.
2. Montalescot G, Sechtem U, Achenbach S, et al. ESC guidelines on the management of stable coronary artery disease: the Task Force on the management of stable coronary artery disease of the European Society of Cardiology. Eur Heart J 2013; 34(38): 2949-3003.
3. Steg PG, James SK, Atar D, et al. ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation. Eur Heart J 2012; 33(20): 2569-619.
4. Hamm CW, Bassand JP, Agewall S, et al. ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation: the Task Force for the management of acute coronary syndromes (ACS) in patients presenting without persistent ST-segment elevation of the European Society of Cardiology (ESC). Eur Heart J 2011; 32(23): 2999-3054.
5. Clinton P, Mozeson M. Pharma Exec 50, 2010. Available at: http://pharmexec.findpharma. com/pharmexec/data/articlestandard//pharmexec/222010/671415/article.pdf (Accessed 12 September 2013).
6. Chen ZM, Jiang LX, Chen YP, et al. Addition of clopidogrel to aspirin in 45,852 patients with acute myocardial infarction: randomised placebo-controlled trial. Lancet 2005; 366: 1607-21.
7. Sabatine MS, Cannon CP, Gibson CM, et al. Effect of clopidogrel pretreatment before percutaneous coronary intervention in patients with ST-elevation myocardial infarction treated with fibrinolytics: the PCI-CLARITY study. JAMA 2005; 294: 1224-32.
8. Wallentin L, Becker RC, Budaj A, et al. Ticagrelor versus clopidogrel in patients with acute coronary syndromes. N Engl J Med 2009; 361(11): 1045-57.
9. Dangas GD, Caixeta A, Mehran R, et al., Frequency and predictors of stent thrombosis after percutaneous coronary intervention in acute myocardial infarction. Circulation 2011; 123: 1745-56.
10. Serebruany VL, Steinhubl SR, Berger PB, et al. Variability in platelet responsiveness to clopidogrel among 544 individuals. J Am CollCardiol 2005; 45: 246-51.
11. Breet NJ, van Werkum JW, Bouman HJ, et al. Comparison of platelet function tests in predicting clinical outcome in patients undergoing coronary stent implantation. JAMA 2010; 303(8): 754-62.
12. Wiviott SD, Braunwald E, McCabe CH, et al. Prasugrel versus clopidogrel in patients with acute coronary syndromes. N Engl J Med 2007; 357: 2001-15.
13. Qureshi Z, Hobson AR. Clopidogrel “resistance”: where are we now? CardiovascTher 2013; 31(1): 3-11.
14. Garabedian T, Alam S. High residual platelet reactivity on clopidogrel: its significance and therapeutic challenges overcoming clopidogrel resistance. CardiovascDiagnTher 2013; 3(1): 23-37.
15. Kazui M, Nishiya Y, Ishizuka T, et al. Identification of the human cytochrome P450 enzymes involved in the two oxidative steps in the bioactivation of clopidogrel to its pharmacologically active metabolite. Drug Metab Dispos 2010; 38: 92-9
16. Taubert D, von Beckerath N, Grimberg G, et al. Impact of P-glycoprotein on clopidogrel absorption. Clin Pharmacol Ther 2006; 80: 486-501.
17. Frelinger AL, Bhatt DL, Lee RD, et al.Clopidogrel pharmacokinetics and pharmacodynamics vary widely despite exclusion or control of polymorphisms (CYP2C19, ABCB1, PON1), noncompliance, diet, smoking, co-medications (including proton pump inhibitors), and pre-existent variability in platelet function. J Am Coll Cardiol 2013; 61(8): 872-9.
18. Shuldiner AR, O’Connell JR, Bliden KP, et al. Association of cytochrome P450 2C19 genotype with the antiplatelet effect and clinical efficacy of clopidogrel therapy. JAMA 2009; 302: 849-57.
19. Collet JP, Hulot JS, Pena A, et al. Cytochrome P450 2C19 polymorphism in young patients treated with clopidogrel after myocardial infarction: a cohort study. Lancet 2009; 373: 309-17.
20. Human Cytochrome P450 Allele Nomenclature Committee. The human cytochrome P450 allele nomenclature database 2013. http:// www.cypalleles.ki.se/cyp2c19.htm (Accessed 2 September 2014).
21. Desta Z, Zhao X, Shin JG, et al. Clinical significance of the cytochrome P450 2C19 genetic polymorphism. Clin Pharmacokinet 2002; 41(12): 913-58.
22. Li-Wan-Po A, Girard T, Farndon P, et al. Pharmacogenetics of CYP2C19: functional and clinical implications of a new variant CYP2C19*17. Br J ClinPharmacol 2010; 69(3): 222-30.
23. Beitelshees AL, Horenstein RB, Vesely MR, et al. Pharmacogenetics and clopidogrel response in patients undergoing percutaneouscoronary interventions. Clin Pharmacol Ther 2011; 89: 455-9.
24. Scott SA, Sangkuhl K, Stein CM, et al; Clinical Pharmacogenetics Implementation Consortium. Clinical Pharmacogenetics Implementation Consortium guidelines for CYP2C19 genotype and clopidogrel therapy: 2013 update. Clin Pharmacol Ther 2013; 94(3): 317-23.
25. Mega JL, Simon T, Collet JP, et al. Reduced-function CYP2C19 genotype and risk of adverse clinical outcomes among patients treated with clopidogrel predominantly for PCI: a meta-analysis. JAMA 2010; 304(16): 1821-30.
26. Harmsze AM, van Werkum JW, Hackeng CM, et al. The influence of CYP2C19*2 and *17 on on-treatment platelet reactivity and bleeding events in patients undergoing elective coronary stenting. Pharmacogenet Genomics 2012; 22: 169-175.
27. Li Y, Tang HL, Hu YF, et al. The gain-of-function variant allele CYP2C19*17: A doubleedged sword between thrombosis and bleeding in clopidogrel-treated patients. Journal of Thrombosis and Haemostasis 2012; 10: 199-206.
28. Zabalza M, Subirana I, Sala J, et al. Meta-analyses of the association between cytochromeCYP2C19 lossand gain-of-function polymorphisms and cardiovascular outcomes in patients with coronary artery disease treated with clopidogrel. Heart 2012; 98: 100-108.
29. Lewis JP, Stephens SH ,Horenstein RB, et al. The CYP2C19*17 Variant is not Independently Associated with Clopidogrel Response. J ThrombHaemost 2013; 11(9): 1640-6.
30. Bouman HJ, Schomig E, van Werkum JW, et al. Paraoxonase-1 is a major determinant ofclopidogrel efficacy. Nat Med 2011; 17: 110-6.
31. Sibbing D, Koch W, Massberg S, et al. No association of paraoxonase-1 Q192R genotypes with platelet response to clopidogrel and risk of stent thrombosis after coronary stenting. Eur Heart J 2011; 32: 1605-13.
32. Reny JL, Combescure C, Daali Y, et al. Influence of the paraoxonase-1 Q192R genetic variant on clopidogrel responsiveness and recurrent cardiovascularevents: A systematic review and meta-analysis. J ThrombosHaemostas 2012; 10: 1242-51.
33. Lewis JP, Horensteina RB, Ryana K, et al. The functional G143E variant of carboxylesterase 1 is associated with increased clopidogrel active metabolite levels and greater clopidogrel response. Pharmacogenet Genomics 2013; 23(1): 1-8.
34. Tatarunas V, Jankauskiene L, Kupstyte N,et al. The role of clinical parameters and of CYP2C19 G681 and CYP4F2 G1347A polymorphisms on platelet reactivity during dual antiplatelet therapy. Blood Coagul Fibrinolysis 2014; 25(4): 369-74.
35. Satoh T, Hosokawa M. Structure, function and regulation of carboxylesterases. ChemBiol Interact 2006; 162: 195-211. 36. Zhu HJ, Patrick KS, Yuan HJ, et al. Two CES1 gene mutations lead to dysfunctional carboxylesterase 1 activity in man: clinical significance and molecular basis. Am J Hum Genet 2008; 82: 1241-8.
36. Wang MZ, Wu JQ, Bridges AS, et al. Human enteric microsomal CYP4F enzymes O-demethylate the antiparasitic prodrug pafuramidine. Drug Metab Dispos 2007; 35(11): 2067-75.
37. Barden A, Beilin L, Croft L, et al.The influence of a single nucleotide polymorphism in the CYP4F2 gene on platelet epoxyeicosatrienoic acids and platelet aggregation. The 11th Biennial ISSFAL Congress 2014; 2014 June 28 –July; Stockholm, Sweden. http://issfal2014.conferencespot.org/53974-ha-1.1180093/t-002-1.1181977/f-0201.1182049/a-019-1.1182050/ap-082-1.1182054 (Accessed 2 September 2014).
38. Brunk I, Blex C, Rachakonda S, et al. The first luminal domain of vesicular monoamine transporters mediates G-protein-dependent regulation of transmitter uptake. J BiolChem 2006; 281: 33373-85.
39. Li N, Wallen NH, Ladjevardi M, et al. Effects of serotonin on platelet activation in whole blood. Blood Coagul Fibrinol 1997; 8: 517-23.
40. Coto E, Reguero JR, Alvarez V, et al. 5-Hydroxytryptamine 5-HT2A receptor and 5-hydroxytryptamine transporter polymorphisms in acute myocardial infarction. Clin Sci 2003; 104: 241-5.
41. Vikenes K, Farstad M, Nordrehaug JE. Serotonin is associated with coronary artery disease and cardiac events. Circulation 1999; 100: 483-9.
42. Lesperance F, Frasure-Smith N, Koszycki D, et al. Effects of citalopram and interpersonal psychotherapy on depression in patients with coronary artery disease: the Canadian Cardiac Randomized Evaluation of Antidepressant and Psychotherapy Efficacy (CREATE) trial. J Am Med Assoc 2007; 297: 367-79.
43. Ziu E, Mercado Ch, Li Y, et al. Down-regulation of the Serotonin Transporter in hyperreactive platelets counteracts the pro-thrombotic effect of serotonin. JMol Cell Cardiol.2012; 5: 1112-21.
44. Berger JS, Becker RC, Kuhn C, et al. Hyperreactive platelet phenotypes: relationship to altered serotonin transporter number, transport kinetics and intrinsic response to adrenergic co-stimulation. Thromb Haemost 2013; 109: 85-92.
45. Komarov AL, Shakhmatova OO, T.A. Ilyushchenko TA, et al. Assessing Risk of Cardiovascular Events in Clopidogrel-Treated Patients with Stable CHD: Platelet Function or Genetic Testing? Doktor.Ru 2012; 6: 11-9. Russian (КомаровА.Л., ШахматоваО.О., ИлющенкоТ.А., и др. Оценка риска сердечно-сосудистых осложнений у больных стабильной ИБС, получающих клопидогрел: функция тромбоцитов или генетические исследования? Доктор.Ру 2012; 6: 11-9).
46. Galyavich AS, Valeyeva DD, MinnetdinovRSh, et al. CYP2C19 gene polymorphism in patients with myocardial infarction who use clopidogrel. Kardiologiia 2012; 4: 20-4. Russian (ГалявичА.С, ВалееваД.Д., МиннетдиновР.Ш. идр. Полиморфизмгена CYP2C19 у больных инфарктом миокарда, применяющих клопидогрел. Кардиология 2012; 4: 20-4).
47. Knauer NYu, Lifshits GI, Voronina EN, et al. Informativeness of genetic factors for optimization of personalized therapy with clopidogrel. Kardiologiia 2013; 8: 72-5. Russian (Кнауэр Н.Ю., Лифшиц Г.И., Воронина Е. Н., и др. Информативность генетических маркеров для оптимизации персонализированной терапии клопедогрелом. Кардиология 2013; 8: 72-5).
48. Golukhova EZ, Ryabinina MN, Bulaeva NI, et al. The platelet reactivity after percutaneous coronary intervention in patients with double antiplatelet therapy: impact of genetic polymorphisms. Kreativnaya kardiologiya 2014; 3: 39-52. Russian (Голухова Е. З., Григорян М. В., Рябинина М. Н., и др. Современные аспекты фармакогенетикиклопидогреля и его клиническое значение. Креативная кардиология 2014; 3: 39-52).
49. Mazurov AV, Zyuryaev IT, Haspekova SG, et al. Factors influencing platelet aggregation in patients with acute coronary syndrome. Terapevticheskii Arkhiv 2014; 9: 83-9. Russian (Мазуров А. В., Зюряев И. Т., Хаспекова С. Г., и др. Факторы, влияющие на агрегационную активность тромбоцитов у больных с острым коронарным синдромом. Терапевтический архив 2014; 9: 83-9).
50. Sumarokov AB, Meshkov AN, Buryachkovskaya LI, et al. Polymorphism 416 Т>С OF gene CYP2C9 and sensitivity to clopidogrel. Tromboz, gemostazireologiya 2014; 1: 53-61. Russian (Сумароков А. Б., Мешков А.Н., Бурячковская Л. И., и др. Полиморфизм 416Т>С гена CYP2C9 и чувствительность к клопидогрелю. Тромбоз, гемостазиреология 2014; 1: 53-61).
51. Matskeplishvili ST, Prokhorchuk EB, Arutiunova YaE, et al. Role of genetic factors in the development of clopidogrel resistance among patients referred for percutaneous coronary intervention. Cardiovascular Therapy and Prevention 2013; 12(4): 21-5. Russian (Мацкеплишвили С. Т., Прохорчук Е. Б., Арутюнова Я. Э., и др. Рольгенетическихфактороввразвитиирезистентностикклопидогрелюубольных, направляемых на чрескожные коронарные вмешательства. Кардиоваскулярная терапия и профилактика 2013; 12(4): 21-5).
52. Miura G, Ariyoshi N, Sato Y, et al. Genetic and non-genetic factors responsible for antiplatelet effects of clopidogrel in Japanese patients undergoing coronary stent implantation: An algorithm to predict on-clopidogrel platelet reactivity. Thromb Res 2014; 4: 877-83.
53. Roberts JD, Wells GA, Le May MR, et al. Point-of-care genetic testing for personalisation of antiplatelet treatment (RAPID GENE): a prospective, randomised, proof-of-concept trial, Lancet, 2012; 379: 1705-11.
Рецензия
Для цитирования:
Мирзаев К.Б., Сычев Д.А., Андреев Д.А. ГЕНЕТИЧЕСКИЕ ОСНОВЫ РЕЗИСТЕНТНОСТИ К КЛОПИДОГРЕЛЮ: СОВРЕМЕННОЕ СОСТОЯНИЕ ПРОБЛЕМЫ. Российский кардиологический журнал. 2015;(10):92-98. https://doi.org/10.15829/1560-4071-2015-10-92-98
For citation:
Mirzaev K.B., Sychev D.A., Andreev D.A. GENETICS OF CLOPIDOGREL RESISTANCE: RECENT DATA. Russian Journal of Cardiology. 2015;(10):92-98. (In Russ.) https://doi.org/10.15829/1560-4071-2015-10-92-98