Masked arterial hypertension: prevalence, pathophysiological determinants and clinical significance
https://doi.org/10.15829/1560-4071-2019-9-92-98
Abstract
In most modern studies, masked arterial hypertension (MAH) is characterized as a poorly diagnosed, latent clinical condition predisposing to subclinical damage to target organs and an increased risk of cardiovascular complications. The prevalence of MAH among the population depends on gender, age, anthropometric and socioeconomic factors, profession, race and other characteristics. The most important risk factors (RF) of MAH and its pathophysiological determinants include genetic polymorphism, subclinical non-specific inflammation, hemostatic disorders, obesity, metabolic syndrome, water-salt imbalance, dyslipidemia, hyperuricemia. A defined value has latent dysfunction of the mechanisms that provide circulatory homeostasis, the detection of which is possible by the hemodynamic response to psycho-emotional, hypoxic, hypocapnic, orthostatic effects. Aggressiveness of RF exposure and the consequences of their implementation are evaluated by the rate of development of cardiovascular events and mortality, which indicate an unfavorable prognosis of “uncontrolled” MAH. The maximum reduction of the RF effects and rational pharmacotherapy can significantly improve its clinical prospects.
About the Authors
В. I. GeltserRussian Federation
Vladivostok
V. N. Kotelnikov
Russian Federation
Vladivostok
О. О. Vetrova
Russian Federation
Vladivostok
R. S. Karpov
Russian Federation
Tomsk
References
1. Chazova IE. Hypertension in the light of current recommendations. Terapevticheskii arkhiv. 2018;90(9):4-7. (In Russ.) doi:10.26442/terarkh20189094-7.
2. Balanova YuA., Kontsevaya AV, Shal’nova SA et al. Prevalence of behavioral risk factors for cardiovascular disease in the Russian population: Results of the ESSE-RF epidemiological study. Profilakticheskaya meditsina. 2014;17(5):42-52. (In Russ.)
3. Booth JN3rd, Muntner P, Diaz KM, et al. Evaluation of criteria to detect masked hypertension. J Clin Hypertens. 2016;18(11):1086-94. doi:10.1111/jch.12830.
4. Hanninen MR, Niiranen TJ, Puukka PJ, et al. Target organ damage and masked hypertension in the general population: the Finn-Home study. J Hypertens. 2013;31(6):1136-43. doi:10.1097/HJH.0b013e32835fa5dc.
5. Tientcheu D, Ayers C, Das SR, et al. Target organ complications and cardiovascular events associated with masked hypertension and white-coat hypertension: analysis from the Dallas heart study. J Am Coll Cardiol. 2015;66(20):2159-69. doi:10.1016/j.jacc.2015.09.007.
6. Hanninen MR. Is latent hypertension of significance? Duodecim. 2014;130(15):1500-6.
7. Sakaguchi K, Horimatsu T, Kishi M, et al. Isolated home hypertension in the morning is associated with target organ damage in patients with type 2 diabetes. J Atheroscler Thromb. 2005;12(4):225-31.
8. Egan BM, Zhao Y, Axon RN. US trends in prevalence, awareness, treatment, and control of hypertension, 1988-2008. JAMA. 2010;303(20):2043-50. doi:10.1001/jama.2010.650.
9. Cuspidi C, Sala C, Tadic M, et al. Untreated masked hypertension and subclinical cardiac damage: a systematic review and meta-analysis. Am J Hypertens. 2015;28(6):806-13. doi:10.1093/ajh/hpu231.
10. Schmieder RE, Schmidt ST, Riemer T, et al. Disproportional decrease in office blood pressure compared with 24-hour ambulatory blood pressure with antihypertensive treatment: dependency on pretreatment blood pressure levels. Hypertension. 2014;64(5):1067-72. doi:10.1161/HYPERTENSIONAHA.113.03140.
11. Asayama K, Thijs L, Li Y, et al. International database on ambulatory blood pressure in relation to cardiovascular outcomes (IDACO) investigators. Setting thresholds to varying blood pressure monitoring intervals differentially affects risk estimates associated with white-coat and masked hypertension in the population. Hypertension. 2014;64(5):935-42. doi:10.1161/HYPERTENSIONAHA.114.03614.
12. Papadopoulos DP, Makris TK. Masked hypertension definition, impact, outcomes: a critical review. J Clin Hypertens. 2007;9(12):956-63.
13. Booth JN3rd, Diaz KM, Seals SR, et al. Masked hypertension and cardiovascular disease events in a prospective cohort of blacks: the Jackson Heart Study. Hypertension. 2016;68(2):501-10. doi:10.1161/HYPERTENSIONAHA.116.07553.
14. Fagard RH, Cornelissen VA. Incidence of cardiovascular events in white-coat, masked and sustained hypertension versus true normotension: a meta-analysis. J Hypertens. 2007;25(11):2193-8.
15. Conen D, Aeschbacher S, Thijs L, et al. Age-specific differences between conventional and ambulatory daytime blood pressure values. Hypertension. 2014;64(5):1073-9. doi:10.1161/HYPERTENSIONAHA.114.03957.
16. Lyamina N. P., Nalivaeva A. V., Senchikhin V. N., Lipchanskaya T. P. Masked arterial hypertension in young people: detectability, severity of cardiovascular risk factors and prognosis taking into account gender differences. Russian Journal of Cardiology. 2017;22(4):7-12. (In Russ.)
17. Fujiwara T, Yano Y, Hoshide S, et al. Association of cardiovascular outcomes with masked hypertension defined by home blood pressure monitoring in a Japanese general practice population. JAMA Cardiol. 2018;3(7):583-90. doi:10.1001/jamacardio.2018.1233.
18. Landsbergis PA, Travis A, Schnall PL. Working conditions and masked hypertension. High Blood Press. Cardiovasc Prev. 2013;20(2):69-76. doi:10.1007/s40292-013-0015-2.
19. Trudel X, Brisson C, Milot A. Job strain and masked hypertension. Psychosom Med. 2010;72(8):786-93. doi:10.1097/PSY.0b013e3181eaf327.
20. Shimbo D, Newman JD, Schwartz JE. Masked hypertension and prehypertension: diagnostic overlap and interrelationships with left ventricular mass: the Masked Hypertension Study. Am J Hypertens. 2012;25(6):664-71. doi:10.1038/ajh.2012.15.
21. Ateş İ, Altay M, Kaplan M, et al. Relationship between socioeconomic level, and the prevalence of masked hypertension and asymptomatic organ damage. Med Sci Monit. 2015;21:1022-30. doi:10.12659/MSM.892684.
22. Colantonio LD, Anstey DE, Carson AP, et al. Metabolic syndrome and masked hypertension among African Americans: The Jackson Heart Study. J Clin Hypertens. 2017;19(6):592600. doi:10.1111/jch.12974.
23. Chazova IE, Ratova LG, Boitsov SA, Nebieridze DV. Diagnostic and treatment of arterial hypertension (Recommendations for the management of arterial hypertension Russian Medical Society of Arterial Hypertension and Society of Cardiology of the Russian Federation). Sistemnyye Gipertenzii. 2010;(3):5-26. (In Russ.)
24. Kal’cheva EY, Oslopov VN, Zaharova OV. Prevalence of sustained arterial hypertension, white coat hypertension and masked hypertension among working women. Kazanskij Medicinskij Zhurnal. 2012;5(93):826-9. (In Russ.)
25. Smirnova MI, Platonova EM, Britov AN, et al. The rate and characters of masked arterial hypertension and masked ineffectiveness of hypertension treatment in industrial workers according to the preventive examination. Rational Pharmacotherapy in Cardiology. 2014;10(5):481-7. (In Russ.)
26. Drawz PE, Alper AB, Anderson AH, et al. Chronic Renal Insufficiency Cohort Study Investigators. Masked hypertension and elevated nighttime blood pressure in CKD: prevalence and association with target organ damage. Clin J Am Soc Nephrol. 2016;11(4):642-52. doi:10.2215/CJN.08530815.
27. Nikitina NM, Romanova TA, Rebrov AP. Masked hypertension: is the problem urgent for patients with rheumatoid arthritis? Arterial’naya gipertenziya (In Russ.) doi:10.18705/1607-419X-2016-22-4-364-369.
28. Matsuoka S, Awazu M. Masked hypertension in children and young adults. Pediatr Nephrol. 2004;19(6):651-4.
29. Centra JC, Roberts G, Opie G, et al. Victorian Infant Collaborative Study Group. Masked hypertension in extremely preterm adolescents. J Paediatr Child Health. 2015;51(11):1060-5. doi:10.1111/jpc.12928.
30. Lurbe E, Torro I, Alvarez V et al. Prevalence, persistence, and clinical significance of masked hypertension in youth. Hypertension. 2005;45(4):493-8.
31. Zhang Q, Cong M, Wang N et al. Association of angiotensin-converting enzyme 2 gene polymorphism and enzymatic activity with essential hypertension in different gender: A case-control study. Medicine. 2018;97(42):e12917. doi:10.1097/MD.0000000000012917.
32. Zhao X, Ren Y, Li H, Wu Y. Association of LIPC -250G/A and -514C/T polymorphisms and hypertension: a systematic review and meta-analysis. Lipids Health Dis. 2018;17(1):238. doi:10.1186/s12944-018-0884-4.
33. Lai FY, Nath M, Hamby SE, et al. Adult height and risk of 50 diseases: a combined epidemiological and genetic analysis. BMC Med. 2018;16(1):187. doi:10.1186/s12916018-1175-7.
34. Dale BL, Madhur MS. Linking inflammation and hypertension via LNK/SH2B3. Curr Opin. Nephrol. Hypertens. 2016;25(2):87-93. doi:10.1097/MNH.0000000000000196.
35. Banaszak B, Świętochowska E, Banaszak P, Ziora K. Endothelin-1 (ET-1), N-terminal fragment of proatrial natriuretic peptide (NTpro-ANP) and tumor necrosis factor alpha (TNF-α) in children with primary hypertension and hypertension of renal origin. Endokrynol Pol. 2018. doi:10.5603/EP.a2018.0079.
36. Rudemiller NP, Crowley SD. The role of chemokines in hypertension and consequent target organ damage. Pharmacol Res. 2017;119:404-11. doi:10.1016/j.phrs.2017.02.026.
37. Tao LX, Yang K, Wu J et al. Association between plasma homocysteine and hypertension: Results from a cross-sectional and longitudinal analysis in Beijing’s adult population from 2012 to 2017. J Clin Hypertens. 2018. doi:10.1111/jch.13398.
38. Liu Z, Liang S, Que S, et al. Meta-analysis of adiponectin as a biomarker for the detection of metabolic syndrome. Front. Physiol. 2018;9:1238. doi:10.3389/fphys.2018.01238.
39. Wysocka MB, Pietraszek-Gremplewicz K, Nowak D. The Role of apelin in cardiovascular diseases, obesity and cancer. Front Physiol. 2018;9:557. doi:10.3389/fphys.2018.00557.
40. Park HK, Kwak MK, Kim HJ, Ahima RS. Linking resistin, inflammation, and cardiometabolic diseases. Korean J Intern Med. 2017;32(2):239-47. doi:10.3904/kjim.2016.229.
41. Caliskan M, Guven A, Ciftci O, et al. Serum uric acid and carotid artery intima media thickness in patients with masked hypertension. Acta. Cardiol. 2014;69(4):417-23.
42. Tabara Y, Igase M, Miki T, et al. J-SHIPP study group. Orthostatic hypertension as a predisposing factor for masked hypertension: the J-SHIPP study. Hypertens Res. 2016;39(9):664-9. doi:10.1038/hr.2016.43.
43. Lyamina NP, Kosareva AV, Tsareva OE, et al. Specifics of neurohumoral activity and clinical presentation of masked arterial hypertension in young males. Russian Journal of Cardiology. 2018;23(4):37-42. (In Russ.) doi:10.15829/1560-4071-2018-4-37-42.
44. Zou X, Cao J, Li JH et al. Prevalence of and risk factors for postprandial hypotension in older Chinese men. J Geriatr Cardiol. 2015;12(6):600-4. doi:10.11909/j.issn.16715411.2015.06.003.
45. Palla M, Saber H, Konda S, Briasoulis A. Masked hypertension and cardiovascular outcomes: an updated systematic review and meta-analysis. Integr Blood Press Control. 2018;11:11-24. doi:10.2147/IBPC.S128947.
46. Maricoto T, Silva EAR, Damiao P, Bastos JM. The OXIMAPA study: hypertension control by ABPM and association with sleep apnea syndrome by pulse oximetry. Acta. Med. Port. 2017;30(2):93-9. doi:10.20344/amp.7495.
47. Wang N, Shao H, Chen Y, et al. Follicle-stimulating hormone, its association with cardiometabolic risk factors, and 10-year risk of cardiovascular disease in postmenopausal women. J. Am. Heart Assoc. 2017;6(9):e005918. doi:10.1161/JAHA.117.005918
Review
For citations:
Geltser В.I., Kotelnikov V.N., Vetrova О.О., Karpov R.S. Masked arterial hypertension: prevalence, pathophysiological determinants and clinical significance. Russian Journal of Cardiology. 2019;(9):92-98. (In Russ.) https://doi.org/10.15829/1560-4071-2019-9-92-98