Noninvasive assessment of the fractional reserve of coronary blood flow with a one-dimensional mathematical model. Preliminary results of the pilot study
https://doi.org/10.15829/1560-4071-2019-3-60-68
Abstract
Aim. To evaluate the diagnostic accuracy of a noninvasive method of fractional flow reserve (FFR) assessment based on a one-dimensional hemodynamic model build on data obtained from the coronary computed tomography angiography (CCTA).
Material and methods. The study enrolled 57 patients: 16 of them underwent 64-slice computed tomography — included retrospectively, 34 — prospectively, with a 640-slice CT scan. Specialists from the Laboratory of Mathematical Modeling processed CT images and evaluated noninvasive FFR. Ischemia was confirmed if FFR <0,80 and disproved if FFR ≥0,80. After that the prospective group of patients was hospitalized for invasive FFR assessment as a reference standard; if ischemia was proved, patients underwent stent implantation. In the retrospective group, patients already had invasive FFR values estimated. Statistical analysis was performed using R programming language packages (cran-r.project.com). Continuous variables are presented as mean values ± standard deviations, order variables are presented as medians with interquartile ranges in parentheses. We used the D’Agostino-Pearson omnibus test for the assessment of normality of distribution; a Q-Q Plot was also constructed. We performed the Bland-Altman analysis and ROC-analysis for comparison of these two methods, and the Pearson’s chi-squared to assess the degree of correlation.
Results. During data processing, 3 patients of the retrospective and 34 patients of the prospective group were excluded from the study. The sensitivity of our method was 90,91% (95% CI; 58,72-99,77), specificity — 86,67% (95% CI; 59,54-98,34), P<0,05, accuracy — 88,46 (95% CI; 69,85-97,55) — in per-vessel analysis. In perpatient analysis, the sensitivity was 91,67% (95% CI; 61,52-99,79), specificity — 80% (95% CI; 28,36-99,49), (P<0,05); accuracy 88,24 (95% CI; 63,56-98,54).
Conclusion. Our method has quite a high accuracy and can be successfully used in clinical practice in order to enhance the diagnostic efficiency of the CCTA.
Keywords
About the Authors
D. G. GognievaRussian Federation
Moscow
Competing Interests: Конфликт интересов не заявляется
T. M. Gamilov
Russian Federation
Moscow
Competing Interests: Конфликт интересов не заявляется
R. A. Pryamonosov
Russian Federation
Moscow
Competing Interests: Конфликт интересов не заявляется
Yu. V. Vasilevsky
Russian Federation
Moscow
Competing Interests: Конфликт интересов не заявляется
S. S. Simakov
Russian Federation
Moscow
Competing Interests: Конфликт интересов не заявляется
F. Liang
China
Shanghai
Competing Interests: Конфликт интересов не заявляется
S. K. Ternovoy
Russian Federation
Moscow
Competing Interests: Конфликт интересов не заявляется
N. S. Serova
Russian Federation
Moscow
Competing Interests: Конфликт интересов не заявляется
E. S. Tebenkova
Russian Federation
Moscow
Competing Interests: Конфликт интересов не заявляется
E. A. Sinitsyn
Russian Federation
Moscow
Competing Interests: Конфликт интересов не заявляется
E. S. Pershina
Russian Federation
Moscow
Competing Interests: Конфликт интересов не заявляется
S. A. Abugov
Russian Federation
Moscow
Competing Interests: Конфликт интересов не заявляется
G. V. Mardanyan
Russian Federation
Moscow
Competing Interests: Конфликт интересов не заявляется
N. V. Zakryan
Russian Federation
Moscow
Competing Interests: Конфликт интересов не заявляется
V. R. Kirakosyan
Russian Federation
Moscow
Competing Interests: Конфликт интересов не заявляется
V. B. Betelin
Russian Federation
Moscow
Competing Interests: Конфликт интересов не заявляется
Yu. O. Mitina
Russian Federation
Moscow
Competing Interests: Конфликт интересов не заявляется
A. Yu. Gubina
Russian Federation
Moscow
Competing Interests: Конфликт интересов не заявляется
D. Yu. Shchekochikhin
Russian Federation
Moscow
Competing Interests: Конфликт интересов не заявляется
A. L. Syrkin
Russian Federation
Moscow
Competing Interests: Конфликт интересов не заявляется
F. Yu. Kopylov
Russian Federation
Moscow
Competing Interests: Конфликт интересов не заявляется
References
1. Simakov SS, Gamilov TM, Kopylov PhYu, et al. Evaluation of the hemodynamic significance of stenosis in multiple lesions of the coronary vessels using mathematical modeling. Bull Exp Biol Med. 2016;162(7):128-32. doi:10.1007/s10517-016-3558-0.
2. Gognieva D, Gamilov T, Pryamonosov R, et al. One-Dimensional Mathematical ModelBased Automated Assessment of Fractional Flow Reserve in a Patient with Silent Myocardial Ischemia. Am J Case Rep. 2018;19:724-8. doi:10.12659/AJCR.908449.
3. Koo BK, Erglis A, Doh JH, et al. Diagnosis of Ischemia-Causing Coronary Stenoses by Noninvasive Fractional Flow Reserve Computed From Coronary Computed Tomographic Angiograms. Results From the Prospective Multicenter DISCOVER-FLOW (Diagnosis of Ischemia-Causing Stenoses Obtained Via Noninvasive Fractional Flow Reserve) Study. J Am Coll Cardiol. 2011;19:1889-997. doi:10.1016/j.jacc.2011.06.066.
4. Min JK, Leipsic J, Pencina MJ, et al. Diagnostic Accuracy of Fractional Flow Reserve from Anatomic CT Angiography. JAMA. 2012;12:1237-45. doi:10.1001/2012.jama.11274.
5. Nørgaard BL, Leipsic J, Gaur S, et al. The NXT Trial Study Group. Diagnostic Performance of Noninvasive Fractional Flow Reserve Derived From Coronary Computed Tomography Angiography in Suspected Coronary Artery Disease. The NXT Trial (Analysis of Coronary Blood Flow Using CT Angiography: Next Steps. J Am Coll Cardiol. 2014;12:1145-55. doi:10.1016/j.jacc.2013.11.043.
6. Douglas PS, De Bruyne B, Pontone G, et al. 1-Year Outcomes of FFRCT-Guided Care in Patients with Suspected Coronary Disease. The PLATFORM Study. J Am Coll Сardiol. 2016;5:435-45. doi:10.1016/j.jacc.2016.05.057.
7. Benton MS, Tesche Ch, De Cecco NC, et al. Noninvasive Derivation of Fractional Flow Reserve From Coronary Computed Tomographic Angiography. A Review. Thorac Imaging. 2017;00(00). doi:10.1097/RTI.0000000000000289.
8. Lu TM, Ferencik M, Roberts SR, et al. Noninvasive FFR Derived From Coronary CT Angiography. ACC: Cardiovascular Imaging. 2017 Apr; 2254. doi:10.1016/j.jcmg.2016.11.024.
9. Gamilov T, Simakov S, Kopylov Ph. Computational simulations of fractional flow reserve variability. Lecture Notes in Computational Science and Engineering. 2016;112:499-507. doi:10.1109/EMBC.2013.6610393.
10. Pershina ES, Sinitsin VE, Mershina EA, et al. Non-invasive FFR derived from standard acquired coronary computed tomography angiography (CTA) datasets (FFRCT) for the diagnosis of myocardial ischemia in patients with coronary artery disease (CAD): first data of clinical use. Comparison with invasive measurement. Medical Visualization. 2018;(2):47- 55. (In Russ.) doi:10.24835/1607-0763-2018-2-47-55.
11. Coenen A, Lubbers MM, Kurata A, et al. Fractional flow reserve computed from noninvasive CT angiography data: diagnostic performance of an on-site clinician-operated computational fluid dynamics algorithm. Radiology. 2015;274:674-83. doi:10.1148/radiol.14140992.
12. Renker M, Schoepf UJ, Wang R, et al. Comparison of diagnostic value of a novel noninvasive coronary computed tomography angiography method versus standard coronary angiography for assessing fractional flow reserve. Am J Cardiol. 2014;114:1303- 8. doi:10.1016/j.amjcard.2014.07.064.
13. Kruk M, Wardziak L, Demkow M, et al. Workstation-based calculation of CTA-based FFR for intermediate stenosis. JACC Cardiovasc Imaging. 2016;9:690-9. doi:10.1016/j.jcmg.2015.09.019.
14. Yang DH, Kim YH, Roh JH, et al. Diagnostic performance of on-site CT-derived fractional flow reserve versus CT perfusion. Eur Heart J. Cardiovasc Imaging. 2017;18:432-40. doi:10.1093/ehjci/jew094.
15. Danilov A, Ivanov Yu, Pryamonosov R, Vassilevski Yu. Methods of Graph Network Reconstruction in Personalized Medicine. Int J Numer Method Biomed Eng. 2015; doi:10.1002/cnm.2754.
Review
For citations:
Gognieva D.G., Gamilov T.M., Pryamonosov R.A., Vasilevsky Yu.V., Simakov S.S., Liang F., Ternovoy S.K., Serova N.S., Tebenkova E.S., Sinitsyn E.A., Pershina E.S., Abugov S.A., Mardanyan G.V., Zakryan N.V., Kirakosyan V.R., Betelin V.B., Mitina Yu.O., Gubina A.Yu., Shchekochikhin D.Yu., Syrkin A.L., Kopylov F.Yu. Noninvasive assessment of the fractional reserve of coronary blood flow with a one-dimensional mathematical model. Preliminary results of the pilot study. Russian Journal of Cardiology. 2019;(3):60-68. (In Russ.) https://doi.org/10.15829/1560-4071-2019-3-60-68