Unfavorable variants of folate metabolism genes in patients with acute coronary syndrome in non-obstructive coronary atherosclerosis
https://doi.org/10.15829/1560-4071-2018-10-33-42
Abstract
Aim. To study the occurrence of allelic variants of folate cycle enzymes’ genes, which are unfavorable with respect to the risk of thrombophilia, to analyze the serum level of homocysteine, and to assess their impact on the development of acute coronary syndrome (ACS) in non-obstructive coronary atherosclerosis (NOCA).
Material and methods. The material for the study was the results of a non- randomized, open, controlled conduct research, NCT02655718' conducted in 2015-2016 in the emergency cardiology department. The sampling included patients older than 18 years with ACS and NOCA, confirmed by invasive coronary angiography (ICAG). Patients who had previously undergone coronary artery revascularization were excluded from the study. We analyzed four polymorphic genotypes of folate cycle enzyme genes of included patients: methylene-tetra- hydro-folate-reductase MTHFR (677 C>T, 1298 A>C), methionine synthetase MTR (2756 A>G), methionine synthetase reductase MTRR (66 A>G). Determination of genotypes was performed using the methods of polymerase chain reaction and the use of a set of reagents produced by OOO “DNK-Tekhnologiya”. The level of homocysteine was determined by the enzyme immunoenzyme technique using Axis (UK) set of instruments for diagnosis and standards methods.
Results. In 2015-2016 913 patients with ACS were hospitalized in emergency cardiology department; 44 (4.8%) were patients with NOKA. The mean age was 54±11 years (68% men). Mean level of homocysteine in the examined patients was 12,2 (10,8; 13,6) umol/l, in men — 12,4 umol/l (11,5; 13,6), in women — 11,3 umol/l (9,5; 13,2). Hyperhomocisteinemia (HHC) was registered in 8 (18%) individuals. The median level of homocysteine in patients with HHC was 22,8 (17,2; 25). An increase in the ultra-sensitive C-reactive protein and diagnosing of acute myocardial infarction (AMI) were more common in patients with HHC. The level of homocysteine did not differ in patients with various degrees of coronary artery stenosis; it was associated with age, hereditary background, smoking and the carriage of an unfavorable homozygous polymorphic variant of the TT genotype MTHFR gene (677 C>T). The carriage of the unfavorable TT genotype MTHFR (677 C>T) was statistically significantly more common in patients with AMI. The carriage of unfavorable homo- and heterozygous genotypes of the MTHFR gene (677 C>T) in the group without HHC was also detected. The ancestral allele C of the rs1801133 gene was statistically significantly more common in intact coronary arteries.
Conclusion. In this study 96,6% of patients with ACS and NOCA were carriers of unfavorable polymorphic variants of folate metabolism genes. The carriage frequency of unfavorable T allele of rs1801133 gene is statistically significantly more common in patients with AMI. The presence of this genotype is associated with the development of HHC, which is equivalent of literature data. However, the presence of the allelic variant of TT MTHFR (677 C>T) did not always lead to the development of HHC. An increase in plasma homocysteine levels is directly proportional to age, hereditary background, smoking, and carriage of the TT rs1801133 genotype. It is also associated with an increased risk of AMI, which confirms previous studies.
Keywords
About the Authors
V. V. RyabovRussian Federation
Competing Interests: Конфликта интересов нет
S. B. Gomboeva
Russian Federation
Competing Interests: Конфликта интересов нет
Yu. D. Lugacheva
Russian Federation
Competing Interests: Конфликта интересов нет
I. B. Kulagina
Russian Federation
Competing Interests: Конфликта интересов нет
R. P. Karpov
Russian Federation
Competing Interests: Конфликта интересов нет
References
1. Ibanez B, James S, Agewall S, et al. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: The Task Force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC). European Heart Journal. 2017;00:1-66. doi:10.1093/eurheartj/ehx393.
2. Ryabov VV, Gomboeva SB, Shelkovnikova ТA, et al. Сardiac magnetic resonance imaging in differential diagnostics of acute coronary syndrome in patients with non-obstruction coronary atherosclerosis. Russian Journal of Cardiology. 2017;22(12):47-54. (In Russ.). doi:1015829/1560-4071-2017-12-47-54.
3. Agewall S, Beltrame JF, Reynolds HR, et al. ESC working group position paper on myocardial infarction with non-obstructive coronary arteries. European Heart Journal. 2017;38:143-53. doi:10.1093/eurheartj/ehw149.
4. Chrysant SG, Chrysant GS. The current status of homocysteine as a risk factor for cardiovascular disease: a mini review. Expert Rev Cardiovasc Ther. 2018;16(8):559-65. doi:10.1080/14779072.2018.1497974.
5. Martl-Carvajal AJ, Sola I, Lathyris D, et al. Homocysteine-lowering interventions for preventing cardiovascular events. Cochrane Database of Systematic Reviews. 2017;8:126. doi:10.1002/14651858.CD006612.pub5.
6. Mukhina PN, Vorobyova NA, Belyakova IV. Genetic polymorphysm in the gene of methyltetrahydrofolatreductaza and its impact on plasma homocysteine level and on long-term effects of acute myocardial infarction. Ekologiya cheloveka. 2012;10:54-60. (In Russ.).
7. Chen L, Liu L, Hong K, et al. Three Genetic Polymorphisms of Homocysteine-Metabolizing Enzymes and Risk of Coronary Heart Disease: A Meta-Analysis Based on 23 Case-Control Studies. DNA AND CELL BIOLOGY. 2012;31(2):238-49. doi:10.1089/dna.2011.1281.
8. Li X, Weng L, Han B, et al. Association of folate metabolism gene polimorphisms and haplotype combination with pulmonary embolism risk in Chinese Han population. Mamm Genome. 2017;28(5-6):220-26. doi:10.1007/s00335-017-9692-9.
9. Lu Q, Dai D, Zhao W, et al. Association between polymorphism of MTHFR c.677C>T and risk of cardiovascular disease in Turkish population: a meta-analysis for 2.780 cases and 3.022 controls. Tumor Biology. 2013;34(5):2801-17 doi:10.1007/s11033-013-2873-z.
10. Lewis SJ, Ebrahim S, Smith GD. Meta-analysis of MTHFR 677C->T polymorphism and coronary heart disease: does totality of evidence support causal role for homocysteine and preventive potential of folate? Biomedical Journal. 2005;331:1053. doi: 10.1136/bmj.38611.658947.55.
11. Yang B, Fan S, Zhi X, et al. Prevalence of Hyperhomocysteinemia in China: A Systematic Review and Meta-Analysis. Nutrients. 2015;7:74-90. doi:10.3390/nu7010074.
12. Debreceni B, Debreceni L. The Role of Homocysteine-Lowering B-Vitamins in the Primary Prevention of Cardiovascular Disease. Cardiovascular Therapeutics. 2014;32:130-8. doi: 10.1111/1755-5922.12064.
13. Debreceni B, Debreceni L. Why do homocysteine-lowering B vitamin and antioxidant E vitamin supplementations appear to be ineffective in the prevention of cardiovascular diseases? Cardiovascular therapy. 2012;30:227-33. doi:10.1111/j.1755-5922.2011.00266.x.
14. Mancia G, Fagard R, Narkiewicz K, et al. 2013 ESH/ESC Guidelines for the management of arterial hypertension The Task Force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). European Heart Journal. 2013:31(7):1281-357. doi:10.1093/euroheartj/eht151.
15. Sharif-Yakan A, Divchev D, Trautwein U, et al. The coronary slow flow phenomena or “cardiac syndrome Y”: A review. Reviews in Vascular Medicine. 2014;2(4): 118-22. doi:10.1016/j.rvm.2014.07.001.
16. Momot AP. Modern methods of recognition of thrombotic state. Izdatel'stvo Altayskogo gosudarstvennogo universiteta. 2011. p.137. (In Russ.).
17. Hmimech W, Idrissi HH, Diakite B, et al. Association of C677T, MTHFR and G20210A Fll prothrombin polymorphisms with susceptibility to myocardial infarction. Biomedical Reports. 2016;5(3):361-6. doi:10.3892/br.2016.717.
18. Ocura T, Miyoshi K, Irita J, et al. Hyperhomocysteinemia is one of the risk factors associated with cerebrovascular stiffness in hypertensive patients, especially elderly males. Scientific Reports. 2014;4:5663. doi:10.1038/srep05663.
19. Dinavahi R, Falkner B. Relationship of homocysteine with cardiovascular disease and blood pressure. The Journal of Clinical Hypertension. 2004;6(9):494-8. doi:10.1111/j.1524-6175.2004.03643.x.
20. Pasupathy S, Rodgers S, Tavella R, et al. Risk of Thrombosis in Myocardial Infarction with Non Obstructive Coronary Arteries (MINOCA). Heart, Lung and Circulation. 2016;25:S64. doi:10.1016/j.hlc.2016.06.144.
21. Abdel-Salam M, Ibrahim S, Pessar SA, et al. The relationship between serum homocysteine and highly sensitive C-reactive protein levels in children on regular hemodialysis. Saudi Journal of Kidney Diseases and Transplantation. 2017;28(3):483-90. doi:10.4103/1319-2442.206442.
22. Vinukonda G, Mohammad NS, Jain JN. Genetic and environmental influences on total plasma homocysteine and coronary artery disease (CAD) risk among South Indians. Clinica Chimica Acta. 2009;405(1-2):127-31. doi:10.1016/j.cca.2009.04.015.
Review
For citations:
Ryabov V.V., Gomboeva S.B., Lugacheva Yu.D., Kulagina I.B., Karpov R.P. Unfavorable variants of folate metabolism genes in patients with acute coronary syndrome in non-obstructive coronary atherosclerosis. Russian Journal of Cardiology. 2018;(10):33-42. (In Russ.) https://doi.org/10.15829/1560-4071-2018-10-33-42