Российский кардиологический журнал

Расширенный поиск


Полный текст:


Метаболическая терапия острого инфаркта миокарда. Глюкозо-инсулин-калиевая смесь - механизм действия, опыт применения.

Об авторах

Г. И. Сторожаков
Российский государственный медицинский университет

Кафедра госпитальной терапии №2 

А. В. Омельченко
Российский государственный медицинский университет

Кафедра госпитальной терапии №2 

Г. Е. Гендлин
Российский государственный медицинский университет

Кафедра госпитальной терапии №2 

Список литературы

1. Neely J.R., Morgan H.E. Relationship between carbohydrate and lipid metabolism and the energy balance of heart muscle. //Ann.Rev. Physiol. - 1974; 36: 413-459.

2. Wisneski J.A., Stanley W.C., Neese R.A. Effects of acute hyperglycaemia on myocardial glycolytic activity in humans. // J.Clin.Invest. - 1990; 85:1648-1656.

3. Saddic M., Lopascuk G.D. Myocardial tryglyceride ternover and contribution to energy substrate utilization in isolated working rat hearts. // J. Biol. Chem. - 1991; 266:8162-8170.

4. Hearse D.J. Cellular damage during myocardial ischaemia: metabolic changes leading to enzyme leakage.; In: Enzymes in Cardiology: Diagnosis and Research. / Edited by D.J. Hearse, J de Leiris. London: John Wiley, 1979; 1-19.

5. Hearse D.J., Humphrey S.W., Chain E.B. Abrapt reoxygenation of the anoxic potassium - arrested perfused rat heart: a study of myocardial enzyme release. // J.Mol.Cell.Cardiol. -1973; 5:395-407.

6. Siegmund B., Zude R., Piper H.M. Recovery of anoxic-reoxygenated cardiomyocytes from severe Ca2+ overload. // Am. J. Physiol. - 1992; 63:H1262-H1269.

7. Piper H.M., Balser C., Ladilov Y.V. The role of Na/H exchange in ischaemia-reperfusion. // Basic Res.Cardiol. - 1996; 91:191-202.

8. Bolli R. Mechanism of myocardial stunning. // Circulation. - 1990; 82:723-738.

9. HearseD.J., Bolli R. Reperfusion-induced injury: manifestations, mechanisms and clinical relevance.//Cardiovasc.Res.-1996;26: 101-108.

10. Hearse D.J. Stunning: a radical reviev. // Cardiovasc.DrugsTher. - 1991; 5:853-876.

11. Bolli R et al. Demonstration of free radical generation in stunned myocardium of intact dogs with the use of the spin trap a -phenyl N-tert-butyl nitrone. // J. Clin. Invest. - 1988; 82:476-485.

12. Kusuoka H., Marban E. Cellular mechanisms of myocardial stunning. // Ann. Rev. Physiol. -1992; 54:243-256.

13. Bolly R; Dawn B.; Tang X.L. Myocardial stunning. // Medicographia. - 1999; 21(2):156-7.

14. Loncoff A.M. Topol E.F. Illusion of reperfusiuon: Does anyone achieve optimal reperfusion during acute myocardial infarction? // Circulation. - 1993; 87: 1792-1805.

15. Califf R.F., Abdelmeguid A.E., Kuntz R.E. et al.Myonecrosis after revascularization procedures.//J.Am.Coll.Card.-1988; 31:241-51.

16. Hearse D.J. Metabobolic Approaches to ischaemic heart disease and its management. /London: Science Press, 1998; chapter 3: p.32.

17. Opie L.H. Cardiac metabolism in ischemic heart disease. // Arch.Mal.Coeur.Vaiss. - 1999 - Dec, 92:12, 1755-60.

18. G.D. Lopaschuc. Optimizing cardiac energy metabolism: a new approach to treating ischaemic heart disease. // Eur. Heart J. Suppl. 1999 ; 1(suppl. 0): 032-039.

19. G. Jackson. Clinical benefits of a metabolic approach to the management of coronary patients. // Eur. Heart J.Suppl. - 1999; 1 (suppl. 0): 028-031.

20. Apstein C.S. Anti-ischemic protection by alteration of substrate for cardiac energy metabolism: results in animals and man. // Medicographia. - 1999; 21(2): 103-7.

21. Opie L.H. The Heart, 2nd ed. New York: Raven Press, 1991:211.

22. Кurien V.A., Оliver M.F. Free fatty acids during acute myocardial infarction. // Prog.Cardiovasc.Dis. - 1971 - Jan, 13:4, 361-73.

23. Кurien V.A., Оliver M.F. A metabolic cause of arrhythmias during acute myocardial hypoxia. // Lancet. - 1970; 1:813-815.

24. Кurien V.A., Yates P.A., Оliver M.F. The role of free fatty acids in the production of ventricular arrhythmias after acute coronary occlusion. // Eur. J. Clin. Invest. - 1971; 1:225-241.

25. Opie L.H. Metabolism of free fatty acids, glucose and catecholamines in acute myocardial infarction. // Am. J.Card. - 1975, 36: 938-953.

26. Oliver MF, Opie LH. Effects of glucose and fatty acids on myocardial ischaemia and arrhythmias. // Lancet. - 1994; 343:155-158.

27. Opie L.H., King L.M. Glucose and glycogene utilization in myocardial ischemia changes in metabolism and consequences for the myocyte. // Mol. Cell. Biochem. - 1998; 180: 3-26.

28. Sabia P.J., Powers E.R., Ragosta M. et al. An association between collateral blood flow and myocardial viability in patients with recent myocardial infarction. // N. Engl. J. Med. - 1992; 327:1825-1831.

29. Weiss J., Hilfbrand B. Functional campartmentation of glycolytic versus oxidative metabolism in isolated rabbit heart. // J. Clin.Invest. - 1985; 75:436-47.

30. Liu B., Clanachan A.S. Schulz R. Cardiac efficiency is improved after ischaemia by altering both the source and fate of protons. // Circ.Res. - 1996; 79: 940-948.

31. Lopaschuk G.D. Fatty acid glucose metabolism: a target for intervention. In: Hearse D.J. Metabolic Approaches to ischaemic heart disease and its management. London: Science Press, 1998: 44-57.

32. Liu B., Clanachan A.S. Schulz R. Cardiac efficiency is improved after ischaemia by altering both the source and fate of protons. // Circ.Res. - 1996; 79: 940-948.

33. Lopaschuk G.D., Wambolt R.B., Barr R.L. An imbalance between glycolysis and glucose oxidation is a possible explanation for the experimental effects of high levels of fatty acids during aerobic perfusion of ischaemic hearts. // J. Pharmacol. Exp. Ther. - 1993; 264:135-144.

34. Stacpoole P.W. The pharmacology of dichloracetate. // Metabolism - 1989; 38:1124-1144.

35. Stenley W.C., Lopaschuk G.D., Hall J. L. Regulation of myocardial carbohydrate metabolism under normal and ischaemic conditions: potential for pharmacological interventions. // Cardiovasc.Res. - 1997; 33:243-257.

36. Belcher P., Drake-Holland A.J., Hynd J.W. et al. Trimetazidine reduced myocardial infarct size, relative to area at risk, after temporary coronary artery occlusion in the rabbit. // Br. J. Pharmacol. - 1992; 7:265.

37. Dalla-Volta S., Maraglino G., Della-Valentina P. et al. Comparison of trimetazidine with nifedipine in effort angina: a double-blind, crossover study. // Cardiovasc.Drugs Ther. - 1990; 4: 853-860.

38. Detry J. M., Sellier P., Pennaforte S. et al. Trimetazidine: a new concept in the treatment of angina: comparison with propranolol in patients with stable angina. // Br. J. Clin. Pharmacol. - 1994;37: 279-288.

39. Michaelides A. P., Spiropoulus K., Dimopoulos K. et al. Antianginal efficacy of the combination of trimetazidine - propranolol compared with isosorbide dinitrate-propranolol in patients with stable angina. // Clin.Drug Invest. - 1997; 3:8-14.

40. Kober G., Buck T., Sievert H. et al. Myocardial protection during percutaneous transluminal coronary angioplasty: effects of trimetazidine. // Eur. Heart J. - 1992; 13:1109-1115.

41. Fabiani J. N., Ponzio O., Emerit I. et al. Cardioprotective effect of trimetazidine during coronary artery graft surgery. // J. Cardiovasc. Surg. - 1992; 33:486-490.

42. Fantini E., Demaison L., Sentex E. et al. Some biochemical aspects of the protective effect of trimetazidine on rat cardiomyocytes during hypoxia and reoxygenation. // J.Mol.Cell.Cardiol. -1994; 26: 949-958.

43. Lopaschuk G.D., Kozak R. Trimetazidine ingibits fatty acid oxidation in the heart. // J.Mol.Cell.Cardiol. - 1998; A112.

44. Aussedat J., Ray A., Kay L. et al. Improvement of long-term preservation of isolated arrested rat heart: beneficial effect of the anti-ischamic agent trimetazidine. // J. Cardiovasc. Pharmacol. - 1993; 21:128-135.

45. Singh B., Mody F.V., Schlbert H. et al. Mechanism of action of novel metabolically active anti-anginal agent. // J. Am. Coll. Cardiol. - 1996; 27 (suppl. A):497A.

46. Kay L. Finelli C., Aussedat J. et al. Improvement of long -term preservation of the isolated arrested rat heart by trmetazidine: effects on the energy state and mitochondrial function. // Am. J. Cardiol. - 1995; 76:45B-49B.

47. Таранов А.И. Особенности течения постинфарктного периода и эффективность лечения предукталому больных инфарктом миокарда после тромболитической терапии. Автореферат диссертации на соискание ученой степени кандитата медицинских наук. Санкт-Петербург. 1999г.

48. Maridonneau-Parini I., Harpey C. Effect of trimetazidine on membrane damage induced by oxygen free radicals in human red cells. // Br. J. Clin. Pharmacol. - 1985; 20:148-51.

49. Maridonneau-Parini I., Harpey C. Trimetazidine protects the human red blood cells against oxygen free radical damage. // Cardiovasc. Drugs Ther. - 1993; 7:149-57.

50. Clauser P., Harpey C. Antioxidant properties of an antiischaemic agent: trimetazidine. // Adv.Exp. Med. Biol. - 1990; 264:247-50.

51. Williams F.M., Tanda K., Kus M., Williams T.J. Trimetazidine ingibits neutrophil accumulation after myocardial ischaemia and reperfusion in rabbits.//J.Cardiovasc.Pharmacol. -1993; 22:828-33.

52. Manchanda S.C., Krishnaswami S. Combination treatment with trimetazidine and diltiazem in stable angina pectoris. // Heart. - 1997; 78:353-357.

53. Drake-Holland A. J., Belcher P.R., Noble M. I. Infarct size in rabbits: a modified method illustrated by the effects of propranolol and trimetazidine. // Basic Res.Cardiol. - 1993; 88:250-258.

54. EMIP-FR Pilot Study Group. Free radicals, reperfusion and myocardial infarction therapy: (European Myocardial Infarction Project: free radicals pilot study. // Eur. Heart J. - 1993; 14 (Suppl G): 48-51.

55. Steg P.G., Grollier G., Gallay P. et al. A randomized double-blind trial of trimetazidine as adjunctive therapy to primary PTCA for acute myocardial infarction. Evidens improved myocardial reperfusion from ST-segment analysis. // Eur. Heart J. - 1998;19:365(abstract).

56. McCormack J.G., Barr R.L. Wolff A.A. et al. Ranolazine stimulates glucose oxidation in normoxic, ischaemic, and reperfused ischaemic rat hearts. // Circulation. - 1996;93:135-142.

57. Pepine C.J., Wolff A.A. A controlled trial with a novel anti-ischemic agent, Ranolasine, in cronic stable angina pectoris that is responsive to conventional antianginal agents. // Amer. J. Card. -2000 v.84; 1:46-50.

58. Sodi-Pollares D., Testelli M., Fishleder F. Effects of intravenous infusion of a potassium-insulin-glucose solution on the electrocardiografic signs of myocardial infarction. // Amer. J. Cardiol. - 1962; 9:166-81.

59. Oliver M.F., Kurien V.A. Relation between serum FFA and arrhytmias and death after AMI. // Lancet. - 1968 ; I:710-714.

60. Rackley C.E., Russell R.J., Rogers W.J., Mantle J.A., McDaniel H.G. Glucose-insulin-potassium infusion in acute myocardial infarction. Review of clinical experience. // Postgrad.Med. - 1979 Feb, 65:2, 93-9.

61. Rackley C.E., Russell R.J., Rogers W.J., Mantle J.A., McDaniel H.G. Glucose-insulin-potassium, free fatty acids and acute myocardial infarction in man. // Circulation. - 1976 Mar, 53:3 Suppl, I207-9.

62. Prather J.W., Russell R.J., Mantle J.A., McDaniel H.G., Rackley C.E. Metabolic consequences of glucose-insulin-potassium infusion in treatment of acute myocardial infarction. // Am.J.Cardiol. - 1976 Jul, 38:1, 95-9.

63. Rogers W.J., Stanley A.J., Breinig J.B., Prather J.W., McDaniel H.G., Moraski R.E., Russell R.J., Rackley C.E. Reduction of hospital mortality rate of acute myocardial infarction with glucose-insulin￾potassium infusion. // Am.Heart J. - 1976 Oct, 92:4, 441-54.

64. Lopaschuk G.D. et al.: Regulation fatty acid oxidation in the mammalian heart in health and disease; Biochem Biophis Acta; 1994; 1213: 263-267.

65. Weisel R.D., Mickle D.A. et al. Delayed myocardial metabolic recovery after blood cardioplegia. Ann. Thorac. Surg.1989; 48:503-7.

66. Rao V., Merante F., Weisel R.D., Shirai T., Ikonomidis J.S., Cohen G., Tumiati L.C., Shiono N., Li R.K., Mickle D.A., Robinson B.H. Insulin stimulates pyruvate dehydrogenase and protects human ventricular cardiomyocytes from simulated ischemia. // J.Thorac. Cardiovasc. Surg. - 1998 Sep, 116:3, 485-94.

67. Coleman G.M., Taegmeyer H et al.: Efficacy of metabolic support with G-I-P for left ventricular pump failure after aortocoronary bypass surgery. // Circulation. - 1989; 80 (suppl. 1): 90-91.

68. King L.M. Opie L.H. Glucose delivery is a major of glucose utilization in the ischemic myocardium with a residual coronary flow. // Cardiovasc. Res. - 1998 Aug, 39:2, 381-92.

69. Yong L.H. Low -flow ischemia leads to translocation of canine heart GLUT-1 and GLUT-4 glucose transporters to the sarcolemma in vivo. // Circ. - 1997; 95:415-422.

70. Stenley et al. Acute myocardial ischemia causes a transmural gradient in glucose extraction but not glucose uptake. // Am. J. Phisiol. - 1992; 262; H91-H96.

71. Sabia P.J., Powers E.R., Ragosta M. et al. An association between collateral blood flow and myocardial viability in patients with recent myocardial infarction. // N.Engl.J.Med. - 1992; 327:1825-1831.

72. Chareonthaitawee P., Christian T.F. et al. Noninvasive prediction of residual blood flow within the risk area during acute myocardial infarction: a multicenter validation study of patients undergoing direct coronary angioplasty. // Am.Heart J. - 1997; 134:639-646.

73. Milavetz J.J., Giebel D.W., Christian T.F., Schwartz R.S., Gibbons R.J. Time to therapy and salvage in myocardial infarction. // J. Amer. Coll. Card. - 1998; 31:1246-51.

74. Christian T.F., O’Connor M.K., Schwartz R.S., Gibbons R.J. Technetium-99m MIBI to assess to coronary collateral flow during acute myocardial infarction in two closed chest animal models. // J. Nucl. Med. - 1997; 38:1840-6.

75. Neely J.R., Grotyohann L.W. Role of glycolytic products in damage to ischemic myocardium. // Circ. Res. - 1984;55: 816-824.

76. Apstein C.S., Deckelbaum L., Mueller M., Hagapian L., Hood W.B. Graded global ischemia and reperfusion: cardiac function and lactate metabolism. // Circulation. - 1977; 55:864-872.

77. Apstein C.S., Gravino F., Hood W.B. Limitation of lactate production as an index of myocardial ischaemia. // Circulation. - 1979; 60: 877-888.

78. Eberli FR,Weinberg EO, Grise WN, Horowitz GL, Apstein CS. Protective effect of increased glycolytic substrate against systolic and diastolic disfunction and increased coronary resistance from prolonged global underperfusion and reperfusion in isolated rabbit hearts perfused with erythrocyte suspensions.//Circ. Res. - 1991;68:466-481.

79. Jarett L., Seals J.R. Pyruvate dehydrogenase activation in adipocyte mitochondria by an insulin-generated mediator from muscle. // Sciense. - 1979; 206:1408-10.

80. Lilley K., Chang C. et al. Insulin-mediator stimulation of pyruvate dehydrogenase phosphatases. // Arch. Biochem. Biophysics - 1992; 296:170-4.

81. Rao V; Merante F; Weisel RD; Shirai T; Ikonomidis JS; Cohen G; Tumiati LC; Shiono N; Li RK; Mickle DA; Robinson BH. Insulin stimulates pyruvate dehydrogenase and protects human ventricular cardiomyocytes from simulated ischemia. // J. Thorac.Cardiovasc. Surg. - 1998 Sep, 116:3, 485-94.

82. Kloner R.A., Ganote C.E., Jennings R.B. The «no-reflow» phenomen after temporary coronary oclussion in the dog. // J. Clin. Invest. - 1974; 54 : 1496-508.

83. Ito H., Iwacura K. et al Clinical implication of the «no-reflow» phenomen. A predictor of complications and left ventricular remodelling in reperfused anterior wall myocardial infarction. // Circul. - 1996; 93:223-8.

84. Ito H., Iwacura K. et al Myocardial perfusion patterns related to thrombolysis in myocardial infarction perfusion grades after coronary angioplasty in patients with acute anterior myocardial infarction. // Circul. - 1996; 93: 1993-9.

85. Ito H., Iwacura K., Oh H. et al. Temporal changes in myocardial perfusion in patiens with reperfused anterior myocardial perfusion. // Circul. - 1995; 91:656-62.

86. Davi G, Catalan I, Averna M. Thromboxane biosynthesis and platelet function in type 11 diabetes mellitus. // N.Engl. J. Med. - 1990; 322:1769-1774.

87. Yudkin JS et al. Insulin therapy in type 2 diabetic subjects suppresses plasminogen activator inhibitor (PAI-1) activity and proinsulin-like molecules independently of glycemic control. // Diabetic.Med. - 1993; 10:27-32.

88. Lazar HL. Enhanced preservation of acutely ischemic myocardium using glucose-insulin-potassium solutions. // J. Card. Surg. - 1994, May, 9:3 Suppl, 474-8.

89. Kambara H., Yoshida A., Kawashita K., Kawai C. Effects of glucose￾insulin-potassium infusion on myocardial infarction and myocardial blood flow following experimental coronary artery occlusion. // Jpn Circ. J. - 1981 Oct, 45:10, 1158-63.

90. Lazar H.L. Enhanced preservation of acutely ischemic myocardium and improved clinical outcomes using glucose-insulin-potassium (GIK) solutions. // Am. J. Cardiol. - 1997, Aug, 80:3A, 90A-93A.

91. Lolley D.M., Ray J.F., Myers W.O., Sheldon G., Sautter R.D. Reduction of intraoperative myocardial infarction by means of exogenous anaerobic substrate enhancement: prospective randomized study. // Ann.Thorac.Surg. - 1978 Dec, 26:6,515-24.

92. Coleman G.M., Gradinac S., Taegtmeyer H. et al. Efficasy of metabolic support with glucose-insulin-potassium for left ventricular pump failure after aortocoronary bypass surgery. // Circulation. - 1989; 80(suppl. I): I91-I96.

93. Gradinak S., Coleman G.M., Taegtmeyer H. et al. Improved cardiac function with glucose-insulin-potassium after aortocoronary bypass surgery. // Ann.Thorac.Surg. - 1989; 48:484-489.

94. Lazar H.L., Philippides G., Fitzgerald C. et al. Glucose-insulin￾potassium solutions enhance recovery after urgent coronary artery bypass grafting. // J. Thorac.Cardiovasc. Surg. -1997; 113:354-362.

95. Beyersdorf F., Acar C., Buckberg GD., Partington M.T., Okamoto F., Allen BS., Young HH., Bugyi HI. Studies on prolonged acute regional ischemia. V. Metabolic support of remote myocardium during left ventricular power failure. // J. Thorac. Cardiovasc.Surg. - 1989, Oct, 98:4, 567-79.

96. Гватуа И.А., Горкун М.А. Лечение острого инфаркта миокарда поляризующей смесью. // Кардиология - 1968; 4: 37-40.

97. Heng M.K. et al. Effects of glucose and glucose-insulin-pottasium on Haemodynamics and enzime release after acute myocardial infarction. // Brit. Heart. J. - 1977;39:748-757.

98. Liedtke D., Neely J.R. Effect of excess glucose and insulin on glicolytic metabolism during experemental myocardial infarction. //Amer. J. Card. - 1976; 38:17-27.

99. ОгановР.Г., СысоеваН.А. Влияниеглюкозо-инсулин-калиевой смеси на размер и клиническое течение инфарктамиокарда. // Кардиология. - 1983; 23(1):31-35.

100. Fath-Ordoubadi F., Beatt K.J. Glucose-insulin-potassium (GIK) therapy for treatment of acute myocardial infarction: an overview of randomized placebo controlled trials. // Ciculation. - 1997; 96:1152-1156.

101. Lundman T., Orinius E. Insulin-glucose-potassium in acute myocardial infarction. // Acta Med. Scand. - 1965; 178:525-528.

102. Malch M. Polarizing solution in acute myocardial infarction. // Am. J. Card. - 1967; 20:363-366.

103. Iisalo E., Kallio V. Potassium, glucose and insulin in the treatment of acute myocardial infarction. // Curr. Ther Res Clin. Exp. - 1969; 11:209-215.

104. Sievers J. et al. Acute myocardial infarction treated by glucose￾insulin-potassium (GIK) infusion. // Cardiology. -1966; 49:239-247.

105. Autio L. et al. Anticoagulants and Sodi-Pallares infusion in acute myocardial infarction. // Acta Med. Scand. - 1966; 179:355-360.

106. Mittra B. Pottasium, glucose, and insulin treatment of myocardial infarction. // Lancet. - 1965; 2:607-609.

107. Medical Research Council Working Party on the Treatment of Myocardial Infarction. Pottasium, glucose, and insulin treatment for acute myocardial infarction. // Lancet. - 1968; 2:1355-1360.

108. Pilcher J. Et al. Pottasium, glucose, and insulin in myocardial infarction. // Lancet. - 1967; 1:1109.

109. Pentecost B.L. et al. Controlled trial of intravenous pottasium, glucose, and insulin treatment in acute myocardial infarction. // Lancet. - 1968; 1: 946-948.

110. Hjermann I. A controlled stady of peroral glucose, insulin and pottasium treatment in myocardial infarction. // Acta Med.Scand. - 1971; 190: 213-218.

111. Heng M.K. Effects of glucose and glucose -insulin-potassium on heamodynamics and enzyme releas after acute myocardial infarction. // Br. Heart J. - 1977; 39:748-757.

112. Stanley A.W.H., Prather J.W. Glucose -insulin-potassium, patient mortality and the acute myocardial infarction: results from a prospective randomized stady. // Circul. - 1978; 57(suppl 2):II- 62. Abstract.

113. Rogers W.J. et al. Prospective randomized trial of glucose-insulin￾potassium in acute myocardial infarction: effect of heamodynamics, short and long-term survival. // J. Am. Coll. Card. - 1983; 1:628.

114. Sattler L.F. Metabolic support during coronary reperfusion. //Am. Heart J. - 1987; 114:54-58.

115. Prospective randomised study of intensive insulin treatment on long term survival after acute myocardial infarction in patients with diabetes mellitus. DIGAMI (Diabetes Mellitus, Insulin Glucose Infusion in Acute Myocardial Infarction) Study Groop. // BMJ. - 1997 May, 314:7093, 1512-5.

116. ECLA Glucose -insulin-potassium Pilot Trial. // Circulation. - 1998; 98:2227-2234.

117. Apstein C.S. Glucose-insulin-potassium for acute myocardial infarction. Remarkable results from a new, prospective randomized trial. // Circulation. - 1998; 98:2223-6.

118. Effectiveness of intravenous thrombolytic treatment in acute myocardial infarction. (GISSI). Lancet. - 1986 ; I : 397-402.

119. LATE. // Lancet. 1993; 342:759.

120. Ceremuzynski L., Budaj A., Czepiel A. et al. for Pol-GIC Trial Investigators. Low-dose glucose-insulin-potassium is ineffective in acute myocardial infarction. Results of randomized multicenter Pol-GIK trial. // Cardiovasc. Drugs Ther. - 1999 (in press).

121. Zhu P; Lu L; Xu Y; Greyson C; Schwartz G.G. Glucose-insulin-potassium preserves systolic and diastolic function in ischemia and reperfusion in pigs. // Am. J. Physiol. Heart Circ. Physiol. - 2000 Feb, 278:2, H595-603.

Для цитирования:


For citation:


Просмотров: 154

Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.

ISSN 1560-4071 (Print)
ISSN 2618-7620 (Online)