ОБОСНОВАНИЕ ПРИМЕНЕНИЯ И ПРЕИМУЩЕСТВА ТРИМЕТАЗИДИНА ПРИ СЕРДЕЧНОЙ НЕДОСТАТОЧНОСТИ, ОБУСЛОВЛЕННЫЕ ЕГО ВЛИЯНИЕМ НА МЕТАБОЛИЗМ МИОКАРДА
https://doi.org/10.15829/1560-4071-2016-8-70-79
Аннотация
Сердечная недостаточность (СН) — системный и мультиорганный синдром, одним из фундаментальных механизмов развития которого является метаболическая недостаточность. Нарушения метаболизма в сердце при СН активируют другие процессы, что еще больше усугубляет прогрессирование этого заболевания.
Недавно полученные данные свидетельствуют о том, что корректировка энергетического метаболизма в сердце путем уменьшения окисления жирных кислот (ЖК) и/или увеличения окисления глюкозы представляет собой перспективный подход в лечении пациентов с СН. Клинические исследования показали, что добавление триметазидина к стандартной медикаментозной терапии улучшает симптомы, функцию сердца и прогноз у пациентов с СН, не оказывая при этом отрицательного влияния на гемодинамику.
В настоящем обзоре основное внимание уделяется обоснованию и клиническим преимуществам применения триметазидина, обусловленным влиянием препарата на метаболизм миокарда при СН, а также отмечается высокая степень готовности данного препарата к включению во все основные рекомендации, касающиеся СН.
Об авторах
Ю. М. ЛопатинРоссия
Волгоград
М.К. Розано Джузеппе
Италия
Рим;
Лондон
Габриэль Фрагассо
Италия
Милан
Гари Д. Лопащук
Канада
Эдмонтон, Альберта
Петар М. Сеферович
Чехословакия
Белград
Луис Хенрик В. Гоудак
Бразилия
Сан-Паоло
Драгос Винереану
Румыния
Бухарест
Магди Абдель Хамид
Египет
Каир
Патрик Журден
Франция
Понтуаз
Петр Пониковски
Польша
Вроцлав
Список литературы
1. Bui AL, Horwich TB, Fonarow GC. Epidemiology and risk profile of heart failure, Nat. Rev. Cardiol. 8 (2011) 30-41.
2. Lloyd-Jones D, Adams RJ, Brown TM, et al. Heart disease and stroke statistics—2010 update: a report from the American Heart Association, Circulation 121 (2010) e46-e215.
3. ESC, Guidelines for the diagnosis and treatment of acute and chronic heart failure 2012, Eur. Heart J. 33 (2012) 1787-847.
4. Doehner W, Frenneaux M, Anker SD. Metabolic impairment in heart failure: the myocardial and systemic perspective, J. Am. Coll. Cardiol. 64 (2014) 1388-400.
5. Heusch G, Libby P, Gersh B, et al. Cardiovascular remodelling in coronary artery disease and heart failure, Lancet 383 (2014) 1933-43.
6. Lopatin Yu. Metabolic cardiac protection is beneficial in patients undergoing coronary revascularization: is it necessary afterwards? Heart Metab. 58 (2013) 25-30.
7. Zhang HXuW, Zhou Y, Zhou Z, et al. Effects of trimetazidine therapy on left ventricular function after percutaneous coronary intervention, Chin. J. Cardiol. 41 (2013) 205-9.
8. Zhang N, Lei J, Liu Q, et al. The effectiveness of preoperative trimetazidine on myocardial preservation in coronary artery bypass graft patients: a systematic review and metaanalysis, Cardiology 131 (2015) 86-96.
9. Di Napoli P, Taccardi AA, Barsotti A. Long term cardioprotective action of trimetazidine and potential effect on the inlammatory process in patients with ischaemic dilated cardiomyopathy, Heart 91 (2005) 161-5.
10. Fragasso G, Palloshi A, Puccetti P, et al. A randomized clinical trial of trimetazidine, a partial free fatty acid oxidation inhibitor in patients with heart failure, J. Am. Coll. Cardiol. 48 (2006) 992-8.
11. Tuunanen H, Engblom E, Naum A, et al. Trimetazidine, a metabolic modulator, has cardiac and extracardiac beneits in idiopathic dilated cardiomyopathy, Circulation 118 (2008) 1250-8.
12. Lopaschuk GD, Ussher JR, Folmes CD, et al. Myocardial fatty acid metabolism in health and disease, Physiol. Rev. 90 (2010) 207-58.
13. Neubauer S. The failing heart—an engine out of fuel, N. Engl. J. Med. 356 (2007) 1140-51.
14. Ingwall JS, Weiss RG. Is the failing heart energy starved? On using chemical energy to support cardiac function, Circ. Res. 95 (2004) 135-45.
15. Beer M, Seyfarth T, Sandstede J, et al. Absolute concentrations of high-energy phosphate metabolites in normal, hypertrophied, and failing human myocardium measured noninvasively with (31)p-sloop magnetic resonance spectroscopy, J. Am. Coll. Cardiol. 40 (2002) 1267-74.
16. Conway MA, Allis J, Ouwerkerk R, Detection of low phosphocreatine to ATP ratio in failing hypertrophied human myocardium by 31p magnetic resonance spectroscopy, Lancet 338 (1991) 973-6.
17. Allard MF, Emanuel PG, Russell JA, et al. Preischemic glycogen reduction or glycolytic inhibition improves postischemic recovery of hypertrophied rat hearts, Am. J. Physiol. 267 (1994) H66-H74.
18. Rajabi M, Kassiotis C, Razeghi P, et al. Return to the fetal gene program protects the stressed heart: a strong hypothesis, Heart Fail. Rev. 12 (2007) 331-43.
19. Kato T, Niizuma S, Inuzuka Y, et al. Analysis of metabolic remodeling in compensated left ventricular hypertrophy and heart failure, Circ. Heart Fail. 3 (2010) 420-30.
20. Allard MF, Schonekess BO, Henning SL, et al. Contribution of oxidative metabolism and glycolysis to ATP production in hypertrophied hearts, Am. J. Physiol. 267 (1994) H742-H750.
21. Henning SL, Wambolt RB, Schonekess BO, et al. Contribution of glycogen to aerobic myocardial glucose utilization, Circulation 93 (1996) 1549-55.
22. Schroeder MA, Lau AZ, Chen AP, et al., Hyperpolarized (13)c magnetic resonance reveals early- and late-onset changes to in vivo pyruvate metabolism in the failing heart, Eur. J. Heart Fail. 15 (2013) 130-40.
23. Zhang L, Jaswal JS, Ussher JR, et al. Cardiac insulin resistance and decreased mitochondrial energy production precede the development of systolic heart failure following pressure overload hypertrophy, Circulation: Heart Fail. 6 (2013) 1039-48.
24. Zhabyeyev P, Gandhi M, Mori J, et al. Pressure-overload-induced heart failure induces a selective reduction in glucose oxidation at physiological afterload, Cardiovasc. Res. 97 (2013) 676-85.
25. Mori J, Alrob OA, Wagg CS, et al. Oudit, ANG II causes insulin resistance and induces cardiac metabolic switch and inefficiency: a critical role of pdk4, Am. J. Physiol. Heart Circ. Physiol. 304 (2013) H1103-H1113.
26. Mori J, Basu R, McLean BA, et al. Agonist-induced hypertrophy and diastolic dysfunction are associated with selective reduction in glucose oxidation: a metabolic contribution to heart failure with normal ejection fraction, Circ. Heart Fail. 5 (2012) 493-503.
27. Liu B, Clanachan AS, Schulz R, et al. Cardiac eficiency is improved after ischemia by altering both the source and fate of protons, Circ. Res. 79 (1996) 940-948.
28. Liu Q, Docherty JC, Rendell JC, et al. High levels of fatty acids delay the recovery of intracellular pH and cardiac efficiency in post-ischemic hearts by inhibiting glucose oxidation, J. Am. Coll. Cardiol. 39 (2002) 718-25.
29. Bersin RM, Wolfe C, Kwasman M, et al. Improved he-modynamic function and mechanical eficiency in congestive heart failure with sodium dichloroacetate, J. Am. Coll. Cardiol. 23 (1994) 1617-24.
30. Randle PJ, Garland PB, Hales CN, et al. The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus, Lancet 1 (1963) 785-9.
31. Reaven GM, Chang H, Hoffman BB. Additive hypoglycemic effects of drugs that modify free-fatty acid metabolism by different mechanisms in rats with streptozocin-induced diabetes, Diabetes 37 (1988) 28-32.
32. Turcani M, Rupp H. Etomoxir improves left ventricular performance of pressureoverloaded rat heart, Circulation 96 (1997) 3681-6.
33. Schmidt-Schweda S, Holubarsch C. First clinical trial with etomoxir in patients with chronic congestive heart failure, Clin. Sci. (Lond.) 99 (2000) 27-35.
34. Abozguia K, Elliott P, McKenna W, et al. Metabolic modulator perhexiline corrects energy deficiency and improves exercise capacity in symptomatic hypertrophic cardiomyopathy, Circulation 122 (2010) 1562-9.
35. Lee L, Campbell R, Scheuermann-Freestone M, et al. Metabolic modulation with perhexiline in chronic heart failure: a randomized, controlled trial of short-term use of a novel treatment, Circulation 112 (2005) 3280-3288.
36. Cheng JF, Chen M, Wallace D, et al., Synthesis and structure-activity relationship of small-molecule malonyl coenzyme a decarboxylase inhibitors, J. Med. Chem. 49 (2006) 1517-25.
37. Dyck JR, Cheng JF, Stanley WC, et al. Malonyl co-enzyme a decarboxylase inhibition protects the ischemic heart by inhibiting fatty acid oxidation and stimulating glucose oxidation, Circ. Res. 94 (2004) 78-84.
38. Al-Hesayen A, Azevedo ER, Floras JS, et al. Selective versus nonselective beta-adrenergic receptor blockade in chronic heart failure: differential effects on myocardial energy substrate utilization, Eur. J. Heart Fail. 7 (2005) 618-23.
39. Kantor PF, Lucien A, Kozak R, et al. The antianginal drug trimetazidine shifts cardiac energy metabolism from fatty acid oxidation to glucose oxidation by inhibiting mitochondrial longchain 3-ketoacyl coenzyme a thiolase, Circ. Res. 86 (2000) 580-8.
40. Lopaschuk GD, Barr R, Thomas PD, et al. Beneficial effects of trimetazidine in ex vivo working ischemic hearts are due to a stimulation of glucose oxidation secondary to inhibition of long-chain 3-ketoacyl coenzyme a thiolase, Circ. Res. 93 (2003) 33-7.
41. Saeedi R, Grist M, Wambolt RB, et al. Trimetazidine normalizes postischemic function of hypertrophied rat hearts, J. Pharmacol. Exp. Ther. 314 (2005) 446-54.
42. Fragasso G, De Cobelli F, Perseghin G, et al. Effects of metabolic modulation by trimetazidine on left ventricular function and phosphocreatine/adenosine triphosphate ratio in patients with heart failure, Eur. Heart J. 27 (2006) 942-8.
43. Park KH, Park WJ, Kim MK, et al. Effects of trimetazidine on endothelial dysfunction after sheath injury of radial artery, Am. J. Cardiol. 105 (2010) 1723-7.
44. Renaud JF. Internal pH, Na+ , and Ca2+ regulation by trimetazidine during cardiac cell acidosis, Cardiovasc. Drugs Ther. 1 (1988) 677-86.
45. Maridonneau-Parini I, Harpey C. Effects of trimetazidine on membrane damage induced by oxygen free radicals in human red cells, Br. J. Clin. Pharmacol. 20 (1985) 148-51.
46. Khan M, Meduru S, Mostafa M, et al. Trimetazidine, administered at the onset of reperfusion, ameliorates myocardial dysfunction and injury by activation of p38 mitogenactivated protein kinase and Akt signaling, J. Pharmacol. Exp. Ther. 333 (2010) 421-9.
47. Liu X, Gai Y, Liu F, et al. Trimetazidine inhibits pressure overload-induced cardiac ibrosis through NADPH oxidase-ROS-CTGF pathway, Cardiovasc. Res. 88 (2010) 150-8.
48. Lommi J, Kupari M, Yki-Jarvinen H. Free fatty acid kinetics and oxidation in congestive heart failure, Am. J. Cardiol. 81 (1998) 45-50.
49. Fragasso G, Salerno A, Lattuada G, et al. Effect of partial inhibition of fatty acid oxidation by trimetazidine on whole body energy metabolism in patients with chronic heart failure, Heart 97 (2011) 1495-500.
50. Brottier L, Barat JL, Combe C, et al. Therapeutic value of a cardioprotective agent in patients with severe ischaemic cardiomyopathy, Eur. Heart J. 11 (1990) 207-12.
51. Lu C, Dabrowski P, Fragasso G, et al. Effects of trimetazidine on ischemic left ventricular dysfunction in patients with coronary artery disease, Am. J. Cardiol. 82 (1998) 898-901.
52. Belardinelli R, Purcaro A. Effects of trimetazidine on the contractile response of chronically dysfunctional myocardium to low-dose dobutamine in ischaemic cardiomyopathy, Eur. Heart J. 22 (2001) 2164-70.
53. Fragasso G, Piatti PM, Monti L, et al. Short- and long-term beneficial effects of partial free fatty acid inhibition in diabetic patients with ischemic dilated cardiomyopathy, Am. Heart J. 146 (2003) 1-8.
54. Monti LD, Setola E, Fragasso G, et al. Metabolic and endothelial effects of trimetazidine on forearm skeletal muscle in patients with type 2 diabetes and ischemic cardiomyopathy, Am. J. Physiol. Endocrinol. Metab. 290 (2006) E54-E59.
55. Rosano GMC, Vitale C, Sposato B, et al. Trimetazidine improves left ventricular function in diabetic patients with coronary artery disease: a double-blind placebo-controlled study, Cardiovasc. Diabetol. 2 (2003) 1-9.
56. Vitale C, Wajngaten M, Sposato B, et al. Trimetazidine improves left ventricular function and quality of life in elderly patients with coronary artery disease, Eur. Heart J. 25 (2004) 1814-21.
57. Sisakian H, Torgomyan A, Barkhudaryan A. The effect of trimetazidine on left ventricular systolic function and physical tolerance in patients with ischaemic cardiomyopathy, Acta Cardiol. 62 (2007) 493-9.
58. Di Napoli P, Di Giovanni P, Gaeta MA, et al. Beneficial effects of trimetazidine treatment on exercise tolerance and B-type natriuretic peptide and troponin T plasma levels in patients with stable ischemic cardiomyopathy, Am. Heart J. 154 (2007) e1-e5 (602).
59. Belardinelli R, Solenghi M, Volpe L, et al. Trimetazidine improves endothelial dysfunction in chronic heart failure: an antioxidant effect, Eur. Heart J. 28 (2007) 1102-8.
60. Zhao P, Zhang J, Yin XG, et al. The effect of trimetazidine on cardiac function in diabetic patients with idiopathic dilated cardiomyopathy, Life Sci. 92 (2013) 633-8.
61. El-Kady T, El-Sabban K, Gabaly M, et al. Effects of trimetazidine on myocardial perfusion and the contractile response of chronically dysfunctional myocardium in ischemic cardiomyopathy: a 24-month study, Am. J. Cardiovasc. Drugs 5 (2005) 271-8.
62. Di Napoli P, Di Giovanni P, Gaeta MA, et al. Trimetazidine and reduction in mortality and hospitalization in patients with ischemic dilated cardiomyopathy: a post hoc analysis of the Villa Pini d’Abruzzo trimetazidine trial, J. Cardiovasc. Pharmacol. 50 (2007) 585-9.
63. Fragasso G, Rosano G, Baek SH, et al. Effect of partial fatty acid oxidation inhibition with trimetazidine on mortality and morbidity in heart failure: results from an international multicenter retrospective cohort study, Int. J. Cardiol. 163 (2013) 320-5.
64. Gao D, Ning N, Niu X, et al. Trimetazidine: a meta-analysis of randomised controlled trials in heart failure, Heart 97 (2011) 278-86.
65. Zhang L, Lu Y, Jiang H, et al., Additional use of trimetazidine in patients with chronic heart failure: a meta-analysis, J. Am. Coll. Cardiol. 59 (2012) 913-22.
66. Zhou X, Chen J. Is treatment with trimetazidine beneficial in patients with chronic heart failure? PLoS ONE 9 (2014), e94660.
67. Grajek S, Michalak M. The effect of trimetazidine added to pharmacological treatment on all-cause mortality in patients with systolic heart failure, Cardiology 131 (2015) 22-9.
68. Masson S, Latini R, Anand IS, et al. Prognostic value of changes in N-terminal pro-brain natriuretic peptide in Val-HeFT (Valsartan heart failure trial), J. Am. Coll. Cardiol. 52 (2008) 997-1003.
69. Wong M, Staszewsky L, Latini R, et al. Valsartan benefits left ventricular structure and function in heart failure: Val-HeFT echocardiography study, J. Am. Coll. Cardiol. 40 (2002) 970-5.
70. Ekman I, Cleland JG, Andersson B, et al. Exploring symptoms in chronic heart failure, Eur. J. Heart Fail. 7 (2005) 699-703.
71. Packer M, Narahara KA, Elkayam U, et al. Double-blind, placebo-controlled study of the efficacy of flosequinan in patients with chronic heart failure. Principal Investigators of the REFLECT Study, J. Am. Coll. Cardiol. 22 (1993) 65-72.
72. Swedberg K, Komajda M, Bohm M, et al. Ivabradine and outcomes in chronic heart failure (SHIFT): a randomised placebo-controlled study, Lancet 376 (2010) 875-85.
73. Fox K, Ford I, Steg PG, et al. Ivabradine for patients with stable coronary artery disease and left-ventricular systolic dysfunction (BEAUTIFUL): a randomised, double-blind, placebocontrolled trial, Lancet 372 (2008) 807-16.
74. Cohn JN, Archibald DG, Ziesche S, et al. Effect of vasodilator therapy on mortality in chronic congestive heart failure. Results of a Veterans Administration Cooperative Study, N. Engl. J. Med. 314 (1986) 1547-52.
75. Cohn JN, Johnson G, Ziesche S, et al. A comparison of enalapril with hydralazineisosorbide dinitrate in the treatment of chronic congestive heart failure, N. Engl. J. Med. 325 (1991) 303-10.
76. Taylor AL, Ziesche S, Yancy C, et al. Combination of isosorbide dinitrate and hydralazine in blacks with heart failure, N. Engl. J. Med. 351 (2004) 2049-57.
77. Packer M, O’Connor CM, Ghali JK, et al. Effect of amlodipine on morbidity and mortality in severe chronic heart failure. Prospective randomized amlodipine survival evaluation study group, N. Engl. J. Med. 335 (1996) 1107-14.
78. Wijeysundera HC, Hansen MS, Stanton E, et al. Neurohormones and oxidative stress in nonischemic cardiomyopathy: relationship to survival and the effect of treatment with amlodipine, Am. Heart J. 146 (2003) 291-7.
79. Danchin N, Marzilli M, Parkhomenko A, et al. Efficacy comparison of trimetazidine with therapeutic alternatives in stable angina pectoris: a network meta-analysis, Cardiology 120 (2011) 59-72.
Рецензия
Для цитирования:
Лопатин Ю.М., Розано Джузеппе М., Фрагассо Г., Лопащук Г., Сеферович П., Гоудак Л., Винереану Д., Хамид М., Журден П., Пониковски П. ОБОСНОВАНИЕ ПРИМЕНЕНИЯ И ПРЕИМУЩЕСТВА ТРИМЕТАЗИДИНА ПРИ СЕРДЕЧНОЙ НЕДОСТАТОЧНОСТИ, ОБУСЛОВЛЕННЫЕ ЕГО ВЛИЯНИЕМ НА МЕТАБОЛИЗМ МИОКАРДА. Российский кардиологический журнал. 2016;(8):70-79. https://doi.org/10.15829/1560-4071-2016-8-70-79
For citation:
Lopatin Yu.M., Rosano G., Fragasso G., Lopashchuk G., Seferovich P., Goudac L., Vinereanu D., Hamid M., Jourdain P., Ponikovsky P. RATIONALE FOR APPLICATION, AND BENEFITS OF TRIMETAZIDINE IN HEART FAILURE BY ITS INFLUENCE OF MYOCARDIUM METABOLISM. Russian Journal of Cardiology. 2016;(8):70-79. (In Russ.) https://doi.org/10.15829/1560-4071-2016-8-70-79