Preview

Российский кардиологический журнал

Расширенный поиск

Артериальная гипертензия при метаболическом синдроме

https://doi.org/10.15829/1560-4071-2025-6536

Аннотация

В статье проанализированы современные представления о патогенезе, диагностике и влиянии на прогноз артериальной гипертензии тела при метаболическом синдроме. Приведен обзор современных возможностей диагностики, немедикаментозной и медикаментозной терапии артериальной гипертензии, а также сердечно-сосудистых преимуществах препаратов, используемых для терапии артериальной гипертензии на фоне метаболического синдрома.

Об авторах

Ж. Д. Кобалава
ФГАОУ ВО Российский Университет Дружбы Народов им. Патриса Лумумбы
Россия

Д.м.н., профессор, член-корр. РАН, зав. кафедрой внутренних болезней с курсом кардиологии и функциональной диагностики, зав. кафедрой внутренних болезней, кардиологии и клинической фармакологии, Медицинский институт.

Москва


Конфликт интересов:

Нет



А. О. Конради
ФГБУ НМИЦ им. В.А. Алмазова Минздрава России
Россия

Д.м.н., профессор, академик РАН, зам. генерального директора по научной работе.

Санкт-Петербург


Конфликт интересов:

Нет



С. В. Недогода
ФГБОУ ВО Волгоградский государственный медицинский университет Минздрава России
Россия

Д.м.н., профессор, зав. кафедрой внутренних болезней ИНМФО.

Волгоград


Конфликт интересов:

Нет



Список литературы

1. Кобалава Ж. Д., Конради А. О., Недогода С. В. и др. Артериальная гипертензия у взрослых. Клинические рекомендации 2024. Российский кардиологический журнал. 2024;29(9):6117. doi:10.15829/1560-4071-2024-6117. EDN: GUEWLU.

2. Hall JE, Mouton AJ, da Silva AA, et al. Obesity, kidney dysfunction, and inflammation: interactions in hypertension. Cardiovasc Res. 2021;117(8):1859-76. doi:10.1093/cvr/cvaa336.

3. Chimonas T, Karagiannis A, Athyros VG, et al. Blood pressure levels constitute the most important determinant of the metabolic syndrome in a mediterranean population: A discrimination analysis. Metab Syndr Relat Disord. 2010;8:523-9.

4. Kannel WB. Hypertension: reflections on risks and prognostication. Med Clin North Am. 2009;93(3):541-58.

5. Mancia G, Bombelli M, Corrao G, et al. Metabolic syndrome in the Pressioni Arteriose Monitorate E Loro Associazioni (PAMELA) study: Daily life blood pressure, cardiac damage, and prognosis. Hypertension. 2007;49:40-7.

6. Cuspidi C, Facchetti R, Bombelli M, et al. Risk of new-onset metabolic syndrome associated with white-coat and masked hypertension: data from a general population. J Hypertens. 2018;36(9):1833-9. doi:10.1097/HJH.0000000000001767.

7. Schillaci G, Pirro M, Vaudo G, et al. Prognostic value of the metabolic syndrome in essential hypertension. J Am Coll Cardiol. 2004;43(10):1817-22. doi:10.1016/j.jacc.2003.12.049.

8. Pannier B, Thomas F, Bean K, et al. The metabolic syndrome: similar deleterious impact on all-cause mortality in hypertensive and normotensive subjects. J Hypertens. 2008;26(6):1223-8. doi:10.1097/HJH.0b013e3282fd9936.

9. Parvanova A, Reseghetti E, Abbate M, Ruggenenti P. Mechanisms and treatment of obesity-related hypertension-Part 1: Mechanisms. Clin Kidney J. 2023;17(1):sfad282. doi:10.1093/ckj/sfad282.

10. Mende CW, Einhorn D. Fatty kidney disease: a new renal and endocrine clinical entity? Describing the role of the kidney in obesity, metabolic syndrome, and type 2 diabetes. Endocr Pract. 2019;25:854-8. doi:10.4158/EP-2018-0568.

11. Hall JE, do Carmo JM, da Silva AA, et al. Obesity, kidney dysfunction and hypertension: mechanistic links. Nat Rev Nephrol. 2019;15(6):367-85. doi:10.1038/s41581-019-0145-4.

12. Zhu Q, Scherer PE. Immunologic and endocrine functions of adipose tissue: implications for kidney disease. Nat Rev Nephrol. 2018;14:105-20. doi:10.1038/nrneph.2017.157.

13. Kotsis V, Jordan J, Micic D, et al. Obesity and cardiovascular risk: a call for action from the European Society of Hypertension Working Group of Obesity, Diabetes and the High-risk Patient and European Association for the Study of Obesity: part A:, mechanisms of obesity induced hypertension, diabetes and dyslipidemia and practice guidelines for treatment. J Hypertens. 2018;36(7):1427-40. doi:10.1097/HJH.0000000000001730.

14. Ma X, McKie PM, Iyer SR, et al. MANP in Hypertension With Metabolic Syndrome: Proof-of-Concept Study of Natriuretic Peptide-Based Therapy for Cardiometabolic Disease. JACC Basic Transl Sci. 2023;9(1):18-29. doi:10.1016/j.jacbts.2023.08.011.

15. Packer M. Leptin-Aldosterone-Neprilysin Axis: Identification of Its Distinctive Role in the Pathogenesis of the Three Phenotypes of Heart Failure in People With Obesity. Circulation. 2018;137(15):1614-31. doi:10.1161/CIRCULATIONAHA.117.032474.

16. Mancia G, Bousquet P, Elghozi JL, et al. The sympathetic nervous system and the metabolic syndrome. J Hypertens. 2007;25(5):909-20. doi:10.1097/HJH.0b013e328048d004.

17. Nickenig G, Röling J, Strehlow K, et al. Insulin induces upregulation of vascular AT1 receptor gene expression by posttranscriptional mechanisms. Circulation. 1998;98(22):2453-60. doi:10.1161/01.cir.98.22.2453.

18. Andronico G, Mangano M, Ferrara L, et al. In vivo relationship between insulin and endothelin role of insulin-resistance. J Hum Hypertens. 1997;11(1):63-6. doi:10.1038/sj.jhh.1000386.

19. Tziomalos K, Athyros VG, Karagiannis A, Mikhailidis DP. Endothelial dysfunction in metabolic syndrome: prevalence, pathogenesis and management. Nutr Metab Cardiovasc Dis. 2010;20(2):140-6. doi:10.1016/j.numecd.2009.08.006.

20. Schlaich M, Straznicky N, Lambert E, Lambert G. Metabolic syndrome: a sympathetic disease? Lancet Diabetes Endocrinol. 2015;3(2):148-57. doi:10.1016/S2213-8587(14)70033-6.

21. Kotsis V, Stabouli S, Papakatsika S, et al. Mechanisms of obesity-induced hypertension. Hypertens Res. 2010;33(5):386-93. doi:10.1038/hr.2010.9.

22. De Pergola G, Campobasso N, Nardecchia A, et al. Para- and perirenal ultrasonographic fat thickness is associated with 24-hours mean diastolic blood pressure levels in over-weight and obese subjects. BMC Cardiovasc Disord. 2015;15:108. doi:10.1186/s12872-015-0101-6.

23. Manno C, Campobasso N, Nardecchia A, et al. Relationship of para- and perirenal fat and epicardial fat with metabolic parameters in overweight and obese subjects. Eat Weight Disord. 2019;24(1):67-72. doi:10.1007/s40519-018-0532-z.

24. Chughtai HL, Morgan TM, Rocco M, et al. Renal sinus fat and poor blood pressure control in middle-aged and elderly individuals at risk for cardiovascular events. Hypertension. 2010;56(5):901-6. doi:10.1161/HYPERTENSIONAHA.110.157370.

25. Foster MC, Hwang SJ, Porter SA, et al. Fatty kidney, hypertension, and chronic kidney disease: the Framingham Heart Study. Hypertension. 2011;58(5):784-90. doi:10.1161/HYPERTENSIONAHA.111.175315.

26. Abdeldayem EH, Mansour MG, Raief Mosaad BM. Measurement of the Surface Area of the Renal Sinus Fat Using MDCT: Correlation with Presence and Severity of Essential Hypertension and Body Mass Index. J Belg Soc Radiol. 2022;106(1):91. doi:10.5334/jbsr.2776.

27. Bloomgarden ZT. Obesity, hypertension, and insulin resistance. Diabetes Care. 2002; 25(11):2088-97. doi:10.2337/diacare.25.11.2088.

28. Gupta AK, Clark RV, Kirchner KA. Effects of insulin on renal sodium excretion. Hypertension. 1992;19(1 Suppl):I78-82. doi:10.1161/01.hyp.19.1_suppl.i78.

29. Laakso M, Edelman SV, Brechtel G, Baron AD. Decreased effect of insulin to stimulate skeletal muscle blood flow in obese man. A novel mechanism for insulin resistance. J Clin Invest. 1990;85(6):1844-52. doi:10.1172/JCI114644.

30. Paoletti R, Gotto AM Jr, Hajjar DP. Inflammation in atherosclerosis and implications for therapy. Circulation. 2004;109(23 Suppl 1):III20-6. doi:10.1161/01.CIR.0000131514.71167.2e.

31. Bautista LE, Atwood JE, O’Malley PG, Taylor AJ. Association between C-reactive protein and hypertension in healthy middle-aged men and women. Coron Artery Dis. 2004;15(6):331-6. doi:10.1097/00019501-200409000-00006.

32. Dauphinot V, Roche F, Kossovsky MP, et al. C-reactive protein implications in new-onset hypertension in a healthy population initially aged 65 years: the Proof study. J Hypertens. 2009;27(4):736-43. doi:10.1097/HJH.0b013e328326f801.

33. Abramson JL, Weintraub WS, Vaccarino V. Association between pulse pressure and C-reactive protein among apparently healthy US adults. Hypertension. 2002;39(2):197-202. doi:10.1161/hy0202.104270.

34. Packard RR, Libby P. Inflammation in atherosclerosis: from vascular biology to biomarker discovery and risk prediction. Clin Chem. 2008;54(1):24-38. doi:10.1373/clinchem.2007.097360.

35. Yilmaz MI, Sonmez A, Caglar K, et al. Effect of antihypertensive agents on plasma adiponectin levels in hypertensive patients with metabolic syndrome. Nephrology (Carlton). 2007;12(2):147-53. doi:10.1111/j.1440-1797.2007.00764.x.

36. Montecucco F, Mach F. Update on therapeutic strategies to increase adiponectin function and secretion in metabolic syndrome. Diabetes Obes Metab. 2009;11(5):445-54. doi:10.1111/j.1463-1326.2008.00986.x.

37. Karthikeyan VJ, Lip GY. Antihypertensive treatment, adiponectin and cardiovascular risk. J Hum Hypertens. 2007;21(1):8-11. doi:10.1038/sj.jhh.1002113.

38. Shargorodsky M, Boaz M, Goldberg Y, et al. Adiponectin and vascular properties in obese patients: is it a novel biomarker of early atherosclerosis? Int J Obes (Lond). 2009;33(5):553-8. doi:10.1038/ijo.2009.37.

39. Fogari R, Preti P, Zoppi A, et al. Effects of amlodipine-atorvastatin combination on inflammation markers and insulin sensitivity in normocholesterolemic obese hypertensive patients. Eur J Clin Pharmacol. 2006;62(10):817-22. doi:10.1007/s00228-006-0176-1.

40. Cesari M, Penninx BW, Newman AB, et al. Inflammatory markers and onset of cardiovascular events: results from the Health ABC study. Circulation. 2003;108(19):2317-22. doi:10.1161/01.CIR.0000097109.90783.FC.

41. Cassis LA, Police SB, Yiannikouris F, Thatcher SE. Local adipose tissue renin-angiotensin system. Curr Hypertens Rep. 2008;10(2):93-8. doi:10.1007/s11906-008-0019-9.

42. Cooper R, McFarlane-Anderson N, Bennett FI, et al. ACE, angiotensinogen and obesity: a potential pathway leading to hypertension. J Hum Hypertens. 1997;11(2):107-11. doi:10.1038/sj.jhh.1000391.

43. Kawarazaki W, Fujita T. The Role of Aldosterone in Obesity-Related Hypertension. Am J Hypertens. 2016;29(4):415-23. doi:10.1093/ajh/hpw003.

44. Weyer C, Pratley RE, Snitker S, et al. Ethnic differences in insulinemia and sympathetic tone as links between obesity and blood pressure. Hypertension. 2000;36(4):531-7. doi:10.1161/01.hyp.36.4.531.

45. Masuo K, Mikami H, Ogihara T, Tuck ML. Weight gain-induced blood pressure elevation. Hypertension. 2000;35(5):1135-40. doi:10.1161/01.hyp.35.5.1135.

46. Grassi G, Seravalle G, Colombo M, et al. Body weight reduction, sympathetic nerve traffic, and arterial baroreflex in obese normotensive humans. Circulation. 1998;97(20):2037-42. doi:10.1161/01.cir.97.20.2037.

47. Grassi G, Mark A, Esler M. The sympathetic nervous system alterations in human hypertension. Circ Res. 2015;116(6):976-90. doi:10.1161/CIRCRESAHA.116.303604.

48. Hall JE, da Silva AA, do Carmo JM, et al. Obesity-induced hypertension: role of sympathetic nervous system, leptin, and melanocortins. J Biol Chem. 2010;285(23):17271-6. doi:10.1074/jbc.R110.113175.

49. Grassi G, Biffi A, Seravalle G, et al. Sympathetic Neural Overdrive in the Obese and Overweight State. Hypertension. 2019;74(2):349-58. doi:10.1161/HYPERTENSIONAHA.119.12885.

50. da Silva AA, do Carmo JM, Wang Z, Hall JE. The brain melanocortin system, sympathetic control, and obesity hypertension. Physiology (Bethesda). 2014;29(3):196-202. doi:10.1152/physiol.00061.2013.

51. Shin MK, Eraso CC, Mu YP, et al. Leptin Induces Hypertension Acting on Transient Receptor Potential Melastatin 7 Channel in the Carotid Body. Circ Res. 2019;125(11):989-1002. doi:10.1161/CIRCRESAHA.119.315338.

52. Shin MK, Mitrut R, Gu C, et al. Pharmacological and Genetic Blockade of Trpm7 in the Carotid Body Treats Obesity-Induced Hypertension. Hypertension. 2021;78(1):104-14. doi:10.1161/HYPERTENSIONAHA.120.16527.

53. Pauza AG, Thakkar P, Tasic T, et al. GLP1R Attenuates Sympathetic Response to High Glucose via Carotid Body Inhibition. Circ Res. 2022;130(5):694-707. doi:10.1161/CIRCRESAHA.121.319874.

54. Lembo G, Vecchione C, Fratta L, et al. Leptin induces direct vasodilation through distinct endothelial mechanisms. Diabetes. 2000;49(2):293-7. doi:10.2337/diabetes.49.2.293.

55. Lu H, Duanmu Z, Houck C, et al. Obesity due to high fat diet decreases the sympathetic nervous and cardiovascular responses to intracerebroventricular leptin in rats. Brain Res Bull. 1998;47(4):331-5. doi:10.1016/s0361-9230(98)00086-0.

56. Kuo JJ, Jones OB, Hall JE. Chronic cardiovascular and renal actions of leptin during hyperinsulinemia. Am J Physiol Regul Integr Comp Physiol. 2003;284(4):R1037-42. doi:10.1152/ajpregu.00480.2002.

57. Haynes WG, Morgan DA, Walsh SA, et al. Cardiovascular consequences of obesity: role of leptin. Clin Exp Pharmacol Physiol. 1998;25(1):65-9. doi:10.1111/j.1440-1681.1998.tb02147.x.

58. Shi Z, Stornetta RL, Stornetta DS, et al. The arcuate nucleus: A site of synergism between Angiotensin II and leptin to increase sympathetic nerve activity and blood pressure in rats. Neurosci Lett. 2022;785:136773. doi:10.1016/j.neulet.2022.136773.

59. Parati G, Lombardi C, Hedner J, et al.; European Respiratory Society; EU COST ACTION B26 members. Position paper on the management of patients with obstructive sleep apnea and hypertension: joint recommendations by the European Society of Hypertension, by the European Respiratory Society and by the members of European COST (COoperation in Scientific and Technological research) ACTION B26 on obstructive sleep apnea. J Hypertens. 2012;30(4):633-46. doi:10.1097/HJH.0b013e328350e53b.

60. Araghi MH, Chen YF, Jagielski A, et al. Effectiveness of lifestyle interventions on obstructive sleep apnea (OSA): systematic review and meta-analysis. Sleep. 2013;36(10):1553-62. doi:10.5665/sleep.3056.

61. Peppard PE, Ward NR, Morrell MJ. The impact of obesity on oxygen desaturation during sleep-disordered breathing. American journal of respiratory and critical care medicine. 2009;180(8):788-93.

62. Dacal Quintas R, Tumbeiro Novoa M, Alves Pérez MT, et al. Obstructive sleep apnea in normal weight patients: characteristics and comparison with overweight and obese patients. Arch Bronconeumol. 2013;49(12):513-7. doi:10.1016/j.arbres.2013.05.005.

63. Bazzano LA, Khan Z, Reynolds K, He J. Effect of nocturnal nasal continuous positive airway pressure on blood pressure in obstructive sleep apnea. Hypertension. 2007;50(2):417-23. doi:10.1161/HYPERTENSIONAHA.106.085175.

64. Alajmi M, Mulgrew AT, Fox J, et al. Impact of continuous positive airway pressure therapy on blood pressure in patients with obstructive sleep apnea hypopnea: a meta-analysis of randomized controlled trials. Lung. 2007;185(2):67-72. doi:10.1007/s00408-006-0117-x.

65. Patil SP, Ayappa IA, Caples SM, et al. Treatment of adult obstructive sleep apnea with positive airway pressure: an American Academy of Sleep Medicine clinical practice guideline. J Clin Sleep Med. 2019;15(2):335-43.

66. Iftikhar IH, Hoyos CM, Phillips CL, Magalang UJ. Meta-analyses of the Association of Sleep Apnea with Insulin Resistance, and the Effects of CPAP on HOMA-IR, Adiponectin, and Visceral Adipose Fat. J Clin Sleep Med. 2015;11(4):475-85. doi:10.5664/jcsm.4610.

67. Guo J, Sun Y, Xue LJ, et al. Effect of CPAP therapy on cardiovascular events and mortality in patients with obstructive sleep apnea: a meta-analysis. Sleep Breath. 2016;20(3):965-74. doi:10.1007/s11325-016-1319-y.

68. Ramar K, Dort LC, Katz SG, et al. Clinical practice guideline for the treatment of obstructive sleep apnea and snoring with oral appliance therapy: an update for 2015. J Clin Sleep Med. 2015;11(7):773-827.

69. Morgenthaler TI, Kapen S, Lee-Chiong T, et al. Practice parameters for the medical therapy of obstructive sleep apnea. SLEEP. 2006;29(8):1031-5.

70. Arcucci O, de Simone G, Izzo R, et al. Association of suboptimal blood pressure control with body size and metabolic abnormalities. J Hypertens. 2007;25(11):2296-300. doi:10.1097/HJH.0b013e3282e9a9e4.

71. Kjeldsen SE, Naditch-Brule L, Perlini S, et al. Increased prevalence of metabolic syndrome in uncontrolled hypertension across Europe: the Global Cardiometabolic Risk Profile in Patients with hypertension disease survey. J Hypertens. 2008;26(10):2064-70. doi:10.1097/HJH.0b013e32830c45c3.

72. Cuspidi C, Meani S, Fusi V, et al. Metabolic syndrome and target organ damage in untreated essential hypertensives. J Hypertens. 2004;22(10):1991-8. doi:10.1097/00004872-200410000-00023.

73. Leoncini G, Ratto E, Viazzi F, et al. Metabolic syndrome is associated with early signs of organ damage in nondiabetic, hypertensive patients. J Intern Med. 2005;257(5):454-60. doi:10.1111/j.1365-2796.2005.01468.

74. Mulè G, Nardi E, Cottone S, et al. Influence of metabolic syndrome on hypertension-related target organ damage. J Intern Med. 2005;257(6):503-13. doi:10.1111/j.1365-2796.2005.01468.x.

75. Athyros VG, Mikhailidis DP. High incidence of metabolic syndrome further increases cardiovascular risk in patients with type 2 diabetes. Implications for everyday practice. J Diabetes Complications. 2016;30(1):9-11. doi:10.1016/j.jdiacomp.2015.07.012.

76. Mulè G, Calcaterra I, Nardi E, et al. Metabolic syndrome in hypertensive patients: An unholy alliance. World J Cardiol. 2014;6(9):890-907. doi:10.4330/wjc.v6.i9.890.

77. Hall ME, Cohen JB, Ard JD, et al.; American Heart Association Council on Hypertension; Council on Arteriosclerosis, Thrombosis and Vascular Biology; Council on Lifestyle and Cardiometabolic Health; and Stroke Council. Weight-Loss Strategies for Prevention and Treatment of Hypertension: A Scientific Statement From the American Heart Association. Hypertension. 2021;78(5):e38-e50. doi:10.1161/HYP.0000000000000202.

78. Barrios V, Escobar C, Calderón A, et al. Blood pressure and lipid goal attainment in the hypertensive population in the primary care setting in Spain. J Clin Hypertens (Greenwich). 2007;9(5):324-9. doi:10.1111/j.1524-6175.2007.06481.x.

79. Cushman WC, Ford CE, Cutler JA, et al.; ALLHAT Collaborative Research Group. Success and predictors of blood pressure control in diverse North American settings: the antihypertensive and lipid-lowering treatment to prevent heart attack trial (ALLHAT). J Clin Hypertens (Greenwich). 2002;4(6):393-404. doi:10.1111/j.1524-6175.2002.02045.x.

80. Недогода С. В. Ожирение и артериальная гипертензия: теория и практика выбора оптимального гипотензивного препарата. М.: Медиком, 2012, с. 1-80.

81. Reisin E, Graves JW, Yamal JM, et al.; ALLHAT Collaborative Research Group. Blood pressure control and cardiovascular outcomes in normal-weight, overweight, and obese hypertensive patients treated with three different antihypertensives in ALLHAT. J Hypertens. 2014;32(7):1503-13; discussion 1513. doi:10.1097/HJH.0000000000000204.

82. Amery A, Berthaux P, Bulpitt C, et al. Glucose intolerance during diuretic therapy. Results of trial by the European Working Party on Hypertension in the Elderly. Lancet. 1978;1(8066):681-3. doi:10.1016/s0140-6736(78)90797-3.

83. Hoskins B, Jackson CM 3rd. The mechanism of chlorothiazide-induced carbohydrate intolerance. J Pharmacol Exp Ther. 1978;206(2):423-30.

84. Mancia G, Grassi G, Zanchetti A. New-onset diabetes and antihypertensive drugs. J Hypertens. 2006;24(1):3-10. doi:10.1097/01.hjh.0000194119.42722.21.

85. Barzilay JI, Davis BR, Cutler JA, et al.; ALLHAT Collaborative Research Group. Fasting glucose levels and incident diabetes mellitus in older nondiabetic adults randomized to receive 3 different classes of antihypertensive treatment: a report from the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT). Arch Intern Med. 2006;166(20):2191-201. doi:10.1001/archinte.166.20.2191.

86. Black HR, Davis B, Barzilay J, et al.; Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial. Metabolic and clinical outcomes in nondiabetic individuals with the metabolic syndrome assigned to chlorthalidone, amlodipine, or lisinopril as initial treatment for hypertension: a report from the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT). Diabetes Care. 2008;31(2):353-60. doi:10.2337/dc07-1452.

87. Kostis JB, Wilson AC, Freudenberger RS, et al.; SHEP Collaborative Research Group. Long-term effect of diuretic-based therapy on fatal outcomes in subjects with isolated systolic hypertension with and without diabetes. Am J Cardiol. 2005;95(1):29-35. doi:10.1016/j.amjcard.2004.08.059.

88. Mancia G, Brown M, Castaigne A, et al.; INSIGHT. Outcomes with nifedipine GITS or Co-amilozide in hypertensive diabetics and nondiabetics in Intervention as a Goal in Hypertension (INSIGHT). Hypertension. 2003;41(3):431-6. doi:10.1161/01.HYP.0000057420.27692.AD.

89. Pepine CJ, Handberg EM, Cooper-DeHoff RM, et al.; INVEST Investigators. A calcium antagonist vs a non-calcium antagonist hypertension treatment strategy for patients with coronary artery disease. The International Verapamil-Trandolapril Study (INVEST): a randomized controlled trial. JAMA. 2003;290(21):2805-16. doi:10.1001/jama.290.21.2805.

90. Gress TW, Nieto FJ, Shahar E, et al. Hypertension and antihypertensive therapy as risk factors for type 2 diabetes mellitus. Atherosclerosis Risk in Communities Study. N Engl J Med. 2000;342(13):905-12. doi:10.1056/NEJM200003303421301.

91. Elliott WJ, Meyer PM. Incident diabetes in clinical trials of antihypertensive drugs: a network meta-analysis. Lancet. 2007;369(9557):201-7. doi:10.1016/S0140-6736(07)60108-1.

92. Aksnes TA, Kjeldsen SE, Rostrup M, et al. Impact of new-onset diabetes mellitus on cardiac outcomes in the Valsartan Antihypertensive Long-Term Use Evaluation (VALUE) trial population. Hypertension. 2007;50:467-73.

93. Verdecchia P, Reboldi G, Angeli F, et al. Adverse prognostic significance of new diabetes in treated hypertensive subjects. Hypertension. 2004;43(5):963-9. doi:10.1161/01.HYP.0000125726.92964.ab.

94. Zillich AJ, Garg J, Basu S, et al. Thiazide diuretics, potassium, and the development of diabetes: a quantitative review. Hypertension. 2006;48(2):219-24. doi:10.1161/01.HYP.0000231552.10054.aa.

95. Lambert GW, Straznicky NE, Lambert EA, et al. Sympathetic nervous activation in obesity and the metabolic syndrome–causes, consequences and therapeutic implications. Pharmacol Ther. 2010;126(2):159-72. doi:10.1016/j.pharmthera.2010.02.002.

96. Sharma AM, Pischon T, Hardt S, et al. Hypothesis: Beta-adrenergic receptor blockers and weight gain: A systematic analysis. Hypertension. 2001;37(2):250-4. doi:10.1161/01.hyp.37.2.250.

97. Dahlöf B, Devereux RB, Kjeldsen SE, et al.; LIFE Study Group. Cardiovascular morbidity and mortality in the Losartan Intervention For Endpoint reduction in hypertension study (LIFE): a randomised trial against atenolol. Lancet. 2002;359(9311):995-1003. doi:10.1016/S0140-6736(02)08089-3.

98. Gupta AK, Dahlof B, Dobson J, et al.; Anglo-Scandinavian Cardiac Outcomes Trial Investigators. Determinants of new-onset diabetes among 19,257 hypertensive patients randomized in the Anglo-Scandinavian Cardiac Outcomes Trial — Blood Pressure Lowering Arm and the relative influence of antihypertensive medication. Diabetes Care. 2008;31(5):982-8. doi:10.2337/dc07-1768.

99. Williams B, Mancia G, Spiering W, et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension: The Task Force for the management of arterial hypertension of the European Society of Cardiology and the European Society of Hypertension:, The Task Force for the management of arterial hypertension of the European Society of Cardiology and the European Society of Hypertension. J Hypertens. 2018;36(10):1953-2041.

100. Bakris GL, Fonseca V, Katholi RE, et al.; GEMINI Investigators. Differential effects of betablockers on albuminuria in patients with type 2 diabetes. Hypertension. 2005;46(6):1309-15. doi:10.1161/01.HYP.0000190585.54734.48.

101. Bell DS, Bakris GL, McGill JB. Comparison of carvedilol and metoprolol on serum lipid concentration in diabetic hypertensive patients. Diabetes Obes Metab. 2009;11(3):234-8. doi:10.1111/j.1463-1326.2008.00927.x.

102. Bakris GL, Fonseca V, Katholi RE, et al.; GEMINI Investigators. Metabolic effects of carvedilol vs metoprolol in patients with type 2 diabetes mellitus and hypertension: a randomized controlled trial. JAMA. 2004;292(18):2227-36. doi:10.1001/jama.292.18.2227.

103. Schmidt AC, Graf C, Brixius K, Scholze J. Blood pressure-lowering effect of nebivolol in hypertensive patients with type 2 diabetes mellitus: the YESTONO study. Clin Drug Investig. 2007;27(12):841-9. doi:10.2165/00044011-200727120-00006.

104. Zanchetti A, Hennig M, Baurecht H, et al. Prevalence and incidence of the metabolic syndrome in the European Lacidipine Study on Atherosclerosis (ELSA) and its relation with carotid intima-media thickness. J Hypertens. 2007;25(12):2463-70. doi:10.1097/HJH.0b013e3282f063d5.

105. Martinez-Martin FJ, Rodriguez-Rosas H, Peiro-Martinez I, et al. Olmesartan/amlodipine vs olmesartan/hydrochlorothiazide in hypertensive patients with metabolic syndrome: the OLAS study. J Hum Hypertens. 2011;25(6):346-53. doi:10.1038/jhh.2010.104.

106. Bakris G, Molitch M, Hewkin A, et al.; STAR Investigators. Differences in glucose tolerance between fixed-dose antihypertensive drug combinations in people with metabolic syndrome. Diabetes Care. 2006;29(12):2592-7. doi:10.2337/dc06-1373.

107. Bakris GL, Molitch M, Sowers J, et al. Reversal of new onset diabetes by nondiuretic based fixed-dose antihypertensive drug combinations. Results of STAR 6-month extension (STAR-LET). J Cardiomet Syndr. 2008;3:18-25.

108. Henriksen EJ, Prasannarong M. The role of the renin-angiotensin system in the development of insulin resistance in skeletal muscle. Mol Cell Endocrinol. 2013;378(1-2):15-22. doi:10.1016/j.mce.2012.04.011.

109. Karagiannis A, Mikhailidis DP, Athyros VG, et al. The role of renin-angiotensin system inhibition in the treatment of hypertension in metabolic syndrome: are all the angiotensin receptor blockers equal? Expert Opin Ther Targets. 2007;11(2):191-205. doi:10.1517/14728222.11.2.191.

110. Zreikat HH, Harpe SE, Slattum PW, et al. Effect of Renin-Angiotensin system inhibition on cardiovascular events in older hypertensive patients with metabolic syndrome. Metabolism. 2014;63(3):392-9. doi:10.1016/j.metabol.2013.11.006.

111. Krysiak R, Sierant M, Marek B, et al. The effect of angiotensin-converting enzyme inhibitors on plasma adipokine levels in normotensive patients with coronary artery disease. Endokrynol Pol. 2010;61(3):280-7.

112. Krysiak R, Sierant M, Marek B, Okopień B. The effect of perindopril and enalapril on plasma resistin levels in normotensive patients with coronary heart disease. Endokrynol Pol. 2010;61(6):683-90.

113. Nedogoda S, Ledyaeva A, Chumachok E, et al. Randomized Trial of Perindopril, Enalapril, Losartan And Telmisartan in Overweight or Obese Patients With Hypertension. Clin Drug Investig. 2013;33:553-61.

114. Недогода С. В., Ледяева А. А., Чумачок Е. В. и др. Сравнительная эффективность периндоприла А и телмисартана у пациентов с артериальной гипертензией и ожирением. Системные гипертензии. 2012;9(1):33-9.

115. Cicero AFG, Fogacci F, Rizzoli E, et al.; Brisighella Heart Study Group. Correction: Cicero et al. Long-Term Impact of Different Triple Combination Antihypertensive Medications on Blood Pressure Control, Metabolic Pattern and Incident, Events: Data from the Brisighella Heart Study. J. Clin. Med. 2021;10:5921. J Clin Med. 2022;11(23):7109. doi:10.3390/jcm11237109.

116. Недогода С. В., Ледяева А. А., Чумачек Е. В. и др. Возможности дополнительной ангиопротекции и коррекция метаболических нарушений при лечении фиксированной комбинацией периндоприл+индапамид пациентов с артериальной гипертензией, достигших целевого, артериального давления. Российский кардиологический журнал. 2018;(4):67-74. doi:10.15829/1560-4071-2018-4-67-74.

117. Farsang C, Dézsi CA, Brzozowska-Villatte R, et al. Beneficial Effects of a Perindopril/ Indapamide Single-Pill Combination in Hypertensive Patients with Diabetes and/or Obesity or Metabolic Syndrome: A Post Hoc Pooled Analysis of Four Observational Studies. Adv Ther. 2021;38(4):1776-90. doi:10.1007/s12325-021-01619-8.

118. Sica DA. The African American Study of Kidney Disease and Hypertension (AASK) trial: what more have we learned? J Clin Hypertens (Greenwich). 2003;5(2):159-67. doi:10.1111/j.1524-6175.2003.01924.x.

119. Yusuf S, Sleight P, Pogue J, et al. Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients. The Heart Outcomes Prevention Evaluation Study Investigators. N Engl J Med. 2000;342(3):145-53.

120. Bosch J, Yusuf S, Gerstein HC, et al. Effect of ramipril on the incidence of diabetes. N Engl J Med. 2006;355(15):1551-62. doi:10.1056/NEJMoa065061.

121. Zidek W, Schrader J, Lüders S, et al. Ramipril-based versus diuretic-based antihypertensive primary treatment in patients with pre-diabetes (ADaPT) study. Cardiovasc Diabetol. 2012;11:1. doi:10.1186/1475-2840-11-1.

122. Колос И. П., Мартынюк T. B., Сафарян А. С. и др. Изучение эффективности терапии ингибитором ангиотензинпревращающего фермента рамиприлом и его комбинации с гидрохлоротиазидом у пациентов с артериальной гипертонией и избыточной массой тела: исследование ХАРИЗМА. Кардиоваскулярная терапия и профилактика. 2008;7(2):65-71.

123. Чазова И. Е., Мартынюк T. B., Небиеридзе Д. В. и др. Сравнительная эффективность лечения фиксированными комбинациями различных доз рамиприла и гидрохлоротиазида. Кардиоваскулярная терапия и профилактика. 2010;9(4):25-31.

124. Kintscher U, Bramlage P, Paar WD, et al. Irbesartan for the treatment of hypertension in patients with the metabolic syndrome: a sub analysis of the Treat to Target post authorization survey. Prospective observational, two armed study in 14,200 patients. Cardiovasc Diabetol. 2007;6:12. doi:10.1186/1475-2840-6-12.

125. Takagi H, Niwa M, Mizuno Y, et al.; ALICE (All-Literature Investigation of Cardiovascular Evidence) Group. Telmisartan as a metabolic sartan: the first meta-analysis of randomized controlled trials in metabolic syndrome. J Am Soc Hypertens. 2013;7(3):229-35. doi:10.1016/j.jash.2013.02.006.

126. Wang Y, Qiao S, Han DW, et al. Telmisartan Improves Insulin Resistance: A Meta-Analysis. Am J Ther. 2018;25(6):e642-e651. doi:10.1097/MJT.0000000000000733.

127. Yusuf S, Teo KK, Pogue J, et al. Telmisartan, ramipril, or both in patients at high risk for vascular events. N Engl J Med. 2008;358(15):1547-59. doi:10.1056/NEJMoa0801317.

128. Georgiopoulos G, Katsi V, Oikonomou D, et al. Azilsartan as a Potent Antihypertensive Drug with Possible Pleiotropic Cardiometabolic Effects: A Review Study. Front Pharmacol. 2016;7:235. doi:10.3389/fphar.2016.00235.

129. Закиев В. Д., Котовская Ю. В., Ткачева О. Н. Сартаны в лечении артериальной гипертензии: фокус на телмисартан и азилсартан. Терапевтический архив. 2023;95(9):810-7. doi:10.26442/00403660.2023.09.202423.

130. Недогода С. В., Чумачек Е. В., Цома В. В. и др. Возможности азилсартана в коррекции инсулинорезистентности и уровня адипокинов при артериальной гипертензии в сравнении с другими сартанами. Российский кардиологический журнал. 2019;(1):70-9. doi:10.15829/1560-4071-2019-1-70-79.

131. Sica D, White WB, Weber MA, et al. Comparison of the novel angiotensin II receptor blocker azilsartan medoxomil vs valsartan by ambulatory blood pressure monitoring. J Clin Hypertens (Greenwich). 2011;13(7):467-72. doi:10.1111/j.1751-7176.2011.00482.x.

132. White WB, Weber MA, Sica D, et al. Effects of the angiotensin receptor blocker azilsartan medoxomil versus olmesartan and valsartan on ambulatory and clinic blood pressure in patients with stages 1 and 2 hypertension. Hypertension. 2011;57(3):413-20. doi:10.1161/HYPERTENSIONAHA.110.163402.

133. Bakris GL, Sica D, Weber M, et al. The comparative effects of azilsartan medoxomil and olmesartan on ambulatory and clinic blood pressure. J Clin Hypertens (Greenwich). 2011;13(2):81-8. doi:10.1111/j.1751-7176.2010.00425.x.

134. Del Fiorentino A, Cianchetti S, Celi A, et al. The effect of angiotensin receptor blockers on C-reactive protein and other circulating inflammatory indices in man. Vasc Health Risk Manag. 2009;5(1):233-42. doi:10.2147/vhrm.s4800.

135. Sola S, Mir MQ, Cheema FA, et al. Irbesartan and lipoic acid improve endothelial function and reduce markers of inflammation in the metabolic syndrome: results of the Irbesartan and Lipoic Acid in Endothelial, Dysfunction (ISLAND) study. Circulation. 2005;111(3):343-8. doi:10.1161/01.CIR.0000153272.48711.B9.

136. Makita S, Abiko A, Naganuma Y, et al. Potential effects of angiotensin II receptor blockers on glucose tolerance and adiponectin levels in hypertensive patients. Cardiovasc Drugs Ther. 2007;21(4):317-8. doi:10.1007/s10557-007-6039-x.

137. Ridker PM, Danielson E, Rifai N, Glynn RJ; Val-MARC Investigators. Valsartan, blood pressure reduction, and C-reactive protein: primary report of the Val-MARC trial. Hypertension. 2006;48(1):73-9. doi:10.1161/01.HYP.0000226046.58883.32.

138. Bloch MJ. Do angiotensin receptor antagonists decrease hsCRP independent of blood pressure — and does it matter? J Clin Hypertens (Greenwich). 2007;9(1):57-9. doi:10.1111/j.1524-6175.2007.06054.x.

139. Futai R, Ito T, Kawanishi Y, et al. Olmesartan ameliorates myocardial function independent of blood pressure control in patients with mild-to-moderate hypertension. Heart Vessels. 2009;24(4):294-300. doi:10.1007/s00380-008-1119-9.

140. Nagamia S, Pandian A, Cheema F, et al. The role of quinapril in the presence of a weight loss regimen: endothelial function and markers of obesity in patients with the metabolic syndrome. Prev Cardiol. 2007 Fall;10(4):204-9. doi:10.1111/j.1520-037x.2007.

141. Persson F, Rossing P, Hovind P, et al. Irbesartan treatment reduces biomarkers of inflammatory activity in patients with type 2 diabetes and microalbuminuria: an IRMA 2 substudy. Diabetes. 2006;55(12):3550-5. doi:10.2337/db06-0827.

142. Derosa G, Maffioli P, Salvadeo SA, et al. Candesartan effect on inflammation in hypertension. Hypertens Res. 2010;33(3):209-13. doi:10.1038/hr.2009.212.

143. Shurtz-Swirski R, Farah R, Sela S, et al. The effect of calcium channel blocker lercanidipine on lowgrade inflammation parameters in essential hypertension patients. Harefuah. 2006;145(12):895-9, 942.

144. Merchant N, Rahman ST, Ferdinand KC, et al. Effects of nebivolol in obese African Americans with hypertension (NOAAH): markers of inflammation and obesity in response to exercise-induced stress. J Hum Hypertens. 2011;25(3):196-202. doi:10.1038/jhh.2010.39.

145. Moriuchi A, Yamasaki H, Shimamura M, et al. Induction of human adiponectin gene transcription by telmisartan, angiotensin receptor blocker, independently on PPAR-gamma activation. Biochem Biophys Res Commun. 2007;356(4):1024-30. doi:10.1016/j.bbrc.2007.03.084.

146. Schepke M, Werner E, Biecker E, et al. Hemodynamic effects of the angiotensin II receptor antagonist irbesartan in patients with cirrhosis and portal hypertension. Gastroenterology. 2001;121(2):389-95. doi:10.1053/gast.2001.26295.

147. Watanabe S, Okura T, Kurata M, et al. Valsartan reduces serum cystatin C and the renal vascular resistance in patients with essential hypertension. Clin Exp Hypertens. 2006;28(5):451-61. doi:10.1080/10641960600798671.

148. Derosa G, Fogari E, D’Angelo A, et al. Metabolic effects of telmisartan and irbesartan in type 2 diabetic patients with metabolic syndrome treated with rosiglitazone. J Clin Pharm Ther. 2007;32(3):261-8. doi:10.1111/j.1365-2710.2007.00820.x.

149. Usui I, Fujisaka S, Yamazaki K, et al. Telmisartan reduced blood pressure and HOMA-IR with increasing plasma leptin level in hypertensive and type 2 diabetic patients. Diabetes Res Clin Pract. 2007;77(2):210-4. doi:10.1016/j.diabres.2006.11.014.

150. de Luis DA, Conde R, González-Sagrado M, et al. Effects of telmisartan vs olmesartan on metabolic parameters, insulin resistance and adipocytokines in hypertensive obese patients. Nutr Hosp. 2010;25(2):275-9.

151. Fujita M, Okuda H, Tsukamoto O, et al. Blockade of angiotensin II receptors reduces the expression of receptors for advanced glycation end products in human endothelial cells. Arterioscler Thromb Vasc Biol. 2006;26(10):e138-42. doi:10.1161/01.ATV.0000239569.99126.37.

152. Schulz R, Heusch G. Tumor necrosis factor-alpha and its receptors 1 and 2: Yin and Yang in myocardial infarction? Circulation. 2009;119(10):1355-7. doi:10.1161/CIRCULATIONAHA.108.846105.

153. Luc G, Bard JM, Juhan-Vague I, et al.; PRIME Study Group. C-reactive protein, interleukin-6, and fibrinogen as predictors of coronary heart disease: the PRIME Study. Arterioscler Thromb Vasc Biol. 2003;23(7):1255-61. doi:10.1161/01.ATV.0000079512.66448.1D.

154. Pai JK, Pischon T, Ma J, et al. Inflammatory markers and the risk of coronary heart disease in men and women. N Engl J Med. 2004;351(25):2599-610. doi:10.1056/NEJMoa040967.

155. Lambers Heerspink HJ, Perkovic V, de Zeeuw D. Renal and cardio-protective effects of direct renin inhibition: a systematic literature review. J Hypertens. 2009;27(12):2321-31. doi:10.1097/HJH.0b013e3283310f92.

156. Novo S, Lunetta M, Evola S, Novo G. Role of ARBs in the blood hypertension therapy and prevention of cardiovascular events. Curr Drug Targets. 2009;10(1):20-5. doi:10.2174/138945009787122897.

157. Park H, Hasegawa G, Obayashi H, et al. Relationship between insulin resistance and inflammatory markers and anti-inflammatory effect of losartan in patients with type 2 diabetes and hypertension. Clin Chim Acta. 2006;374(1-2):129-34. doi:10.1016/j.cca.2006.06.004.

158. Martinez-Martin FJ, Macias-Batista A, Comi-Diaz C, et al. Effects of manidipine and its combination with an ACE inhibitor on insulin sensitivity and metabolic, inflammatory and prothrombotic markers in hypertensive patients with metabolic syndrome:, the MARCADOR study. Clin Drug Investig. 2011;31(3):201-12. doi:10.2165/11587590-000000000-00000.

159. Kinouchi K, Ichihara A, Bokuda K, et al. Differential Effects in Cardiovascular Markers between High-Dose Angiotensin II Receptor Blocker Monotherapy and Combination Therapy of ARB with Calcium Channel Blocker in Hypertension (DEAR Trial). Int J Hypertens. 2011;2011:284823. doi:10.4061/2011/284823.

160. Bahadir O, Uzunlulu M, Oguz A, Bahadir MA. Effects of telmisartan and losartan on insulin resistance in hypertensive patients with metabolic syndrome. Hypertens Res. 2007;30(1):49-53. doi:10.1291/hypres.30.49.

161. Napoli C, Omboni S, Borghi C; ZAMES (Zofenopril in Advanced MEtabolic Syndrome) Study Group. Fixed-dose combination of zofenopril plus hydrochlorothiazide vs. irbesartan plus hydrochlorothiazide in hypertensive patients with established metabolic syndrome, uncontrolled by previous monotherapy. The ZAMES study (Zofenopril in Advanced MEtabolic Syndrome). J Hypertens. 2016;34(11):2287-97. doi:10.1097/HJH.0000000000001079.

162. Fogari R, Zoppi A, Ferrari I, et al. Time to achieve blood pressure goal with a combination versus a conventional monotherapy approach in hypertensive patients with metabolic syndrome. Clin Exp Hypertens. 2010;32(5):245-50. doi:10.3109/10641960903265212.

163. Lacerda LM, Guerrieri YD, Lopes DJ, et al. Effect of antihypertensive agents on metabolic syndrome: a systematic review and meta-analysis. Efeitos de antihipertensivos na síndrome metabólica: uma revisão sistemática e metanálise. Brazilian Journal of Health Review. 2021;4(6):26549-70. doi:10.34119/bjhrv4n6-233.

164. Spinar J, Vitovec J, Soucek M. Anti-hypertensive strategies in patients with MEtabolic parameters, DIabetes mellitus and/or NephropAthy (the M E D I N A study). Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2014;158(3):412-21. doi:10.5507/bp.2013.053.

165. Jamerson K, Weber MA, Bakris GL, et al.; ACCOMPLISH Trial Investigators. Benazepril plus amlodipine or hydrochlorothiazide for hypertension in high-risk patients. N Engl J Med. 2008;359(23):2417-28. doi:10.1056/NEJMoa0806182.

166. Bakris G, Stockert J, Molitch M, et al.; STAR Investigators. Risk factor assessment for new onset diabetes: literature review. Diabetes Obes Metab. 2009;11(3):177-87. doi:10.1111/j.1463-1326.2008.00925.x.

167. Ghiadoni L, Bruno RM, Cartoni G, et al. Combination therapy with lercanidipine and enalapril reduced central blood pressure augmentation in hypertensive patients with metabolic syndrome. Vascul Pharmacol. 2017;92:16-21. doi:10.1016/j.vph.2015.06.004.

168. de Galan BE, Perkovic V, Ninomiya T, et al.; ADVANCE Collaborative Group. Lowering blood pressure reduces renal events in type 2 diabetes. J Am Soc Nephrol. 2009;20(4):883-92. doi:10.1681/ASN.2008070667.

169. Ohnewein B, Shomanova Z, Paar V, et al. Effects of Angiotensin Receptor-Neprilysin Inhibitors (ARNIs) on the Glucose and Fat Metabolism Biomarkers Leptin and Fructosamine. J Clin Med. 2023;12(9):3083. doi:10.3390/jcm12093083.

170. Aroor AR, Mummidi S, Lopez-Alvarenga JC, et al. Sacubitril/valsartan inhibits obesity-associated diastolic dysfunction through suppression of ventricular-vascular stiffness. Cardiovasc Diabetol. 2021;20(1):80. doi:10.1186/s12933-021-01270-1.

171. Tsapas A, Karagiannis T, Kakotrichi P, et al. Comparative efficacy of glucose-lowering medications on body weight and blood pressure in patients with type 2 diabetes: A systematic review and network meta-analysis. Diabetes Obes Metab. 2021;23(9):2116-24. doi:10.1111/dom.14451.

172. Ilias I, Thomopoulos C, Michalopoulou H, et al. Antidiabetic drugs and blood pressure changes. Pharmacol Res. 2020;161:105108. doi:10.1016/j.phrs.2020.105108.

173. Stanciu S, Rusu E, Miricescu D, et al. Links between Metabolic Syndrome and Hypertension: The Relationship with the Current Antidiabetic Drugs. Metabolites. 2023;13(1):87. doi:10.3390/metabo13010087.

174. Yan C, Thijs L, Cao Y, et al. Opportunities of Antidiabetic Drugs in Cardiovascular Medicine: A Meta-Analysis and Perspectives for Trial Design. Hypertension. 2020;76(2):420-31. doi:10.1161/HYPERTENSIONAHA.120.14791.

175. Chong K, Chang JK, Chuang LM. Recent advances in the treatment of type 2 diabetes mellitus using new drug therapies. Kaohsiung J Med Sci. 2024;40(3):212-20. doi:10.1002/kjm2.12800.


Рецензия

Для цитирования:


Кобалава Ж.Д., Конради А.О., Недогода С.В. Артериальная гипертензия при метаболическом синдроме. Российский кардиологический журнал. 2025;30(1S):6536. https://doi.org/10.15829/1560-4071-2025-6536

For citation:


Kobalava Zh.D., Konradi A.O., Nedogoda S.V. Hypertension in metabolic syndrome. Russian Journal of Cardiology. 2025;30(1S):6536. (In Russ.) https://doi.org/10.15829/1560-4071-2025-6536

Просмотров: 25


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1560-4071 (Print)
ISSN 2618-7620 (Online)