Impact of patient genetic characteristics on myocardial contractility recovery during the outpatient rehabilitation after acute myocardial infarction
https://doi.org/10.15829/15604071-2025-6431
EDN: CMGLOO
Abstract
Aim. To study the impact of patients’ genetic characteristics on myocardial contractility recovery after acute myocardial infarction (AMI) during the outpatient rehabilitation using the elastic mapping.
Material and methods. The study included 127 patients (98 men and 29 women), aged 36 to 65 years, with a mean age of 59,0±8,7 years, who had an AMI. Three to six weeks after AMI, all patients underwent the third (outpatient) 14-day stage of rehabilitation. All patients also completed a course of cycling training. Before and after cycling, patients underwent cycle ergometry, a six-minute walk test, and a Borg Scale assessment. Recovery of myocardial contractility was assessed based on changes in these test parameters. All patients underwent genomic DNA extraction, and the following nucleotide sequence variants were analyzed: SCN5A rs1805126, LRRC31 rs16847897, AGTR1 rs5186, and ADRB2 rs1042714. Elastic maps were created using the ElMap software.
Results. An association was established between carriage of the GG genotype of SCN5A rs1805126 and impaired recovery of cardiac contractility. No association was found between carriage of the CC, CG, and GG genotypes of LRRC31 rs16847897 and impaired myocardial contractility recovery. Elastic map visualization made it possible to clearly differentiate patients with the GG, AA, and AG genotypes of SCN5A rs1805126 and to identify areas for further research on AGTR1 rs5186 and ADRB2 rs1042714. No significant differences were found between men and women.
Conclusion. Information on the association between carriage of these genotypes can be used for an individualized approach to exercise level selection during cycling training at the third (outpatient) rehabilitation stage in patients after AMI.
About the Authors
S. E. GolovenkinRussian Federation
Sergey E. Golovenkin — PhD, associate professor of the Department of faculty therapy
Partizan Zheleznyak St., 1, Krasnoyarsk, 660022
S. Yu. Nikulina
Russian Federation
Svetlana Yu. Nikulina — MD, professor, head of the Department of faculty therapy
Partizan Zheleznyak St., 1, Krasnoyarsk, 660022
M. G. Bubnova
Russian Federation
Marina G. Bubnova — MD, professor, head of the Department of rehabilitation and secondary prevention of cardiovascular diseases
Petroverigsky Lane, 10, bld. 3, Moscow, 101990
V. N. Maksimov
Russian Federation
Vladimir N. Maksimov — MD, professor, head of the laboratory of molecular genetic studies of therapeutic pathology
Bogatkova St., 175/1 B, Novosibirsk, Novosibirsk Region, 630089
I. V. Savitsky
Russian Federation
Ivan V. Savitsky — Clinical resident of the Department of therapy IPO
Partizan Zheleznyak St., 1, Krasnoyarsk, 660022
References
1. Averkov OV, Harutyunyan GK, Duplyakov DV, et al. 2024 Clinical practice guidelines for Acute myocardial infarction with ST segment elevation electrocardiogram. Russian Journal of Cardiology. 2025;30(3):6306. (In Russ.) doi:10.15829/1560-4071-2025-6306. EDN: IVJCUK.
2. Averkov OV, Harutyunyan GK, Duplyakov DV, et al. 2024 Clinical practice guidelines for Acute coronary syndrome without ST segment elevation electrocardiogram. Russian Journal of Cardiology. 2025;30(5):6319. (In Russ.) doi:10.15829/1560-4071-2025-6319. EDN: CXJUIB.
3. Galyavich AS, Tereshchenko SN, Uskach TM, et al. 2024 Clinical practice guidelines for Chronic heart failure. Russian Journal of Cardiology. 2024;29(11):6162. (In Russ.) doi:10.15829/1560-4071-2024-6162. EDN: WKIDLJ.
4. Shlyakhto EV. Classification of heart failure: focus on prevention. Russian Journal of Cardiology. 2023;28(1):5351. (In Russ.) doi:10.15829/1560-4071-2023-5351. EDN: RVHDCY.
5. Zateyshchikov DA, Favorova OO, Chumakova OS. Molecular cardiology: from decoding the genetic nature and mechanisms of the diseases development to the introduction into the clinic. Terapevticheskii Arkhiv (Ter. Arkh.). 2022;94(4):463-6. (In Russ.) doi:10.26442/00403660.2022.04.201467.
6. Meshkov AN, Kiseleva AV, Ershova AI, et al. ANGPTL3, ANGPTL4, APOA5, APOB, APOC2, APOC3, LDLR, PCSK9, LPL gene variants and coronary artery disease risk. Russian Journal of Cardiology. 2022;27(10):5232. (In Russ.) doi:10.15829/1560-4071-2022-5232. EDN: FAKGMM.
7. Nalesnik EO, Muslimova EF, Afanasiev SA, et al. Association of ACE gene polymorphisms with cardiovascular events in patients after elective percutaneous coronary interventions. Russian Journal of Cardiology. 2022;27(10):4968. (In Russ.) doi:10.15829/1560-4071-2022-4968. EDN: DJEULB.
8. Feng AF, Liu ZH, Zhou SL, et al. Effects of AMPD1 gene C34T polymorphism on cardiac index, blood pressure and prognosis in patients with cardiovascular diseases: a metaanalysis. BMC Cardiovasc Disord. 2017;17(1):174. doi:10.1186/s12872-017-0608-0.
9. Hung CL, Chang SC, Chang SH, et al. MAGNET Study Investigator. Genetic Polymorphisms of Alcohol Metabolizing Enzymes and Alcohol Consumption are Associated With Asymptomatic Cardiac Remodeling and Subclinical Systolic Dysfunction in Large Community-Dwelling Asians. Alcohol Alcohol. 2017;52(6):638-46. doi:10.1093/alcalc/agx049.
10. Zhang X, Yoon J, Morley M, et al. A common variant alters SCN5A–miR 24 interaction and associates with heart failure mortality. The Journal of clinical investigation. 2018;128(3):1154-63. doi:10.1172/jci95710.
11. Huber M, Treszl A, Wehland M, et al. Genetic variants implicated in telomere length associated with left ventricular function in patients with hypertension and cardiac organ damage. Journal of molecular medicine. 2012;90:1059-67. doi:10.1007/s00109-012-0874-3.
12. McLean RC, Hirsch GA, Becker LC, et al. Polymorphisms of the beta adrenergic receptor predict left ventricular remodeling following acute myocardial infarction. Cardiovasc Drugs Ther. 2011;25(3):251-8. doi:10.1007/s10557-011-6307-7.
13. Ahmed ST, Nasir MI, Amir KF, et al. Spectrum of AGT (M235T) rs699 and AGTR1 (A1166C) rs5186 gene variants and its association with coronary artery disease in Pakistani patients. Pakistan Journal of Medical Sciences. 2025;41(4):1151. doi:10.12669/pjms.41.4.9993.
14. Tran AV, Nguyen AP, Tran PT, et al. The prognostic value of AGTR1 A1166C gene polymorphism in all-cause mortality and heart failure in patients with acute myocardial infarction. Journal of the Renin-Angiotensin-Aldosterone System. 2025;26:14703203241312627. doi:10.1177/14703203241312627.
15. Jia X, Meng L, Tang W, et al. Impact of the gene polymorphisms in the renin-angiotensin system on cardiomyopathy risk: A meta-analysis. Plos one. 2024;19(1):0295626. doi:10.1371/journal.pone.0295626.
16. Mishra A, Srivastava A, Kumar S, et al. Role of angiotensin II type I (AT1 A1166C) receptor polymorphism in susceptibility of left ventricular dysfunction. Indian heart journal. 2015;67(3):214-21. doi:10.1016/j.ihj.2015.04.013.
17. Kumar S, Mishra A, Srivastava A, Mittal R, Mittal B. Genetics of Left Ventricular Dysfunction in Coronary Artery Disease. In Biomedical Research, Medicine, and Disease, 2023, pp. 167- 202. ISBN: 9781003220404. doi:10.1201/9781003220404-16.
18. Lozhkina NG, Mukaramov I, Maksimov VN. Some genetic markers of risk for post-infarction heart failure. Medical and Pharmaceutical Journal "Pulse". 2023;25(2):65-70. (In Russ.) doi:10.26787/nydha-2686-6838-2023-25-2-65-70.
19. Kalinkina TV, Lareva NV, Chistyakova MV, et al. Association of angiotensin metabolism gene polymorphisms with left ventricular diastolic dysfunction in patients with hypertension. Pacific Medical Journal. 2023;(1):44-9. (In Russ.) doi:10.34215/1609-1175-2023-1-44-49.
20. Hart RK, Fokkema IFAC, DiStefano M, et al. HGVS Nomenclature 2024: improvements to community engagement, usability, and computability. Genome Med. 2024;16(1):149. doi:10.1186/s13073-024-01421-5.
21. Wang Y, Klijn JG, Zhang Y, et al. Gene expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet. 2005;365:671-9. doi:10.1016/s0140-6736(05)17947-1.
22. Gorban AN, Zinovyev A. Principal manifolds and graphs in practice: from molecular biology to dynamical systems. International Journal of Neural Systems. 2010;20(3):219-32. doi:10.1142/s0129065710002383.
23. Chacon M, Levano H, Allende H, et al. Detection of Gene Expressions in Microarrays by Applying Iteratively Elastic Neural Net, In: B. Beliczynski et al. (Eds.), Lecture Notes in Computer Sciences, Vol. 4432, Springer: Berlin — Heidelberg. 2007, рр. 355-63. ISBN: 9783540716297. doi:10.1007/978-3-540-71629-7-40.
24. Shaban H, Tavoularis S. Measurement of gas and liquid flow rates in two-phase pipe flows by the application of machine learning techniques to differential pressure signals. International Journal of Multiphase. Flow. 2014;67:106-17. doi:10.1016/j.ijmultiphaseflow.2014.08.012.
25. Resta M. Computational Intelligence Paradigms in Economic and Financial Decision Making. Series Intelligent Systems Reference Library. Volume 99. Springer International Publishing. Switzerland, 2016. ISBN: 9783319214405, doi:10.1007/978-3-319-21440-5.
26. Zinovyev A. Data visualization in political and social sciences, In: SAGE "International Encyclopedia of Political Science", Badie B, Berg-Schlosser D, Morlino LA. (Eds.), 2011. ISBN: 9781412994163.
27. Resta M. Portfolio optimization through elastic maps: Some evidence from the Italian stock exchange, Knowledge-Based Intelligent Information and Engineering Systems, Apolloni B, Howlett RJ, Jain L. (eds.), Lecture Notes in Computer Science, Vol. 4693, Springer: Berlin — Heidelberg, 2010, рр. 635-41. ISBN: 9783540748274, doi:10.1007/978-3-540-74827-4-80.
28. Gorban AN, Zinovyev AY. Principal Graphs and Manifolds, In: Handbook of Research on Machine Learning Applications and Trends: Algorithms, Methods and Techniques, Olivas ES, et al. Eds. Information Science Reference, IGI Global: Hershey, PA, USA, 2009. 28-59. doi:10.4018/978-1-60566-766-9.ch002.
29. Sambrook J, Fritsch EF, Maniatis T. Molecular Cloning, A Laboratory Manual (Second Edition). Vol. 1, 2 and 3. New York: Cold spring harbor laboratory press, 1989. doi:10.1002/jobm.3620300824.
30. Aronov DM. Cardiorehabilitation and secondary prevention. Moscow: GEOTAR-media, 2021. p.464. (In Russ.) ISBN: 978-5-9704-6218-8. doi:10.33029/9704-6218-8-CAR-2021-1-464.
31. Boudreau RL, Spengler RM, Skeie JM, et al. No longer silent: a synonymous coding SNP modifying a novel microRNA 24: SCN5A interaction associates With Non-arrhythmic death in heart failure. Circulation. 2015;132(suppl_3):A17984-A17984. doi:10.1161/circ.132.suppl_3.17984.
32. Boudreau RL, Zhang X, McLendon JM, et al. Abstract 271: Reduced expression of the cardiac sodium channel Nav1. 5 triggers enhanced fatty acid metabolism and oxidative stress. Circulation research. 2019;125(Suppl_1):A271-A271. doi:10.1161/res.125.suppl_1.271.
33. Patel KK, Venkatesan C, Abdelhalim H, et al. Genomic approaches to identify and investigate genes associated with atrial fibrillation and heart failure susceptibility. Human genomics. 2023;17(1):47. doi:10.1186/s246-023-00498-0.
34. Lee D, Gunamalai L, Kannan J, et al. Massively parallel reporter assays identify functional enhancer variants at QT interval GWAS loci. BioRxiv. 2025. doi:10.1101/2025.03.11.642686.
35. Dean L, Kane M. Metoprolol Therapy and CYP2D6 Genotype. 2017 Apr 4 [updated 2025 Jan 17]. In: Pratt VM, Scott SA, Pirmohamed M, Esquivel B, Kattman BL, Malheiro AJ, editors. Medical Genetics Summaries [Internet]. Bethesda (MD): National Center for Biotechnology Information (US); 2012. PMID: 28520381.
36. Castaño-Amores C, Antúnez-Rodríguez A, Pozo-Agundo A, et al. Genetic polymorphisms in ADRB1, ADRB2 and CYP2D6 genes and response to beta-blockers in patients with acute coronary syndrome. Biomedicine & Pharmacotherapy. 2023;169:115869. doi:10.1016/j.biopha.2023.115869.
37. Sveklina TS, Shustov SB, Kolyubaeva SN, et al. Metabolic biomarkers in patients with type 2 diabetes mellitus and preserved ejection fraction heart failure. Journal of Diabetes Mellitus. 2024;27(1):15-24. (In Russ.) doi:10.14341/DM13028.
38. Liu H, Xian X, Li C, et al. Single Nucleotide Polymorphisms Related to Telomere Length Predispose for Coronary Heart Disease in Chinese Han Population. Research Square Platform LLC. doi:10.21203/rs.3.rs-4006199/v1.
39. Jinesh S, Özüpek B, Aditi P. Premature aging and metabolic diseases: the impact of telomere attrition. Frontiers in Aging. 2025;6:1541127. doi:10.3389/fragi.2025.1541127.
40. Delgado-Losada ML, Bouhaben J, Arroyo-Pardo E, et al. Loneliness, depression, and genetics in the elderly: Prognostic factors of a worse health condition? International Journal of Environmental Research and Public Health. 2022;19(23):15456. doi:10.3390/ijerph192315456.
41. Metaxa S, Missouris C, Mavrogianni D, et al. Polymorphism Gln27Glu of β2 Adrenergic Receptors in Patients with Ischaemic Cardiomyopathy. Curr Vasc Pharmacol. 2018;16(6): 618-23. doi:10.2174/1570161115666170919180959.
Supplementary files
Review
For citations:
Golovenkin S.E., Nikulina S.Yu., Bubnova M.G., Maksimov V.N., Savitsky I.V. Impact of patient genetic characteristics on myocardial contractility recovery during the outpatient rehabilitation after acute myocardial infarction. Russian Journal of Cardiology. 2025;30(10):6431. (In Russ.) https://doi.org/10.15829/15604071-2025-6431. EDN: CMGLOO







































