Preview

Russian Journal of Cardiology

Advanced search

Heat shock proteins in the assessment of the course and prognosis of heart failure with preserved ejection fraction

https://doi.org/10.15829/1560-4071-2025-6317

EDN: YHFXWZ

Abstract

Aim. To analyze the relationship between the concentrations of circulating heat shock proteins (HSP): HSP27, HSP70 and cardiovascular HSP (cvHSP) with the course of heart failure with preserved ejection fraction (HFpEF) and the outcomes of acute decompensated HFpEF (ADHFpEF).

Material and methods. A total of 120 patients with a confirmed diagnosis of HFpEF aged 50 to 90 years and acute decompensated HFpEF at the time of blood sampling, as well as 20 patients with HFpEF without clinical manifestations of ADHFpEF were examined. Before treatment, blood was collected from patients and serum was obtained with subsequent storage at -80 0C for biomarker testing by the enzyme immunoassay (AssayPro, USA and Cloud-Clone, USCN) on a Thermo Multiscan FC microplate photometer (USA). Fatal outcomes were monitored in patients in the interval from 6 months to 1,5 years.

Results. The median serum levels of HSP27, HSP70 and cvHSP are significantly higher in patients with decompensated than with compensated HFpEF. Elevated baseline levels of HSP70 (>3,5 ng/ml) and cvHSP (>1321 pg/ml) in patients with ADHFpEF are associated with an unfavorable survival prognosis. For HSP27, no significant differences were found in the survival analysis.

Conclusion. An association was found between serum concentrations of HSP70 and cvHSP with an unfavorable survival prognosis in patients with ADHFpEF, which allows them to be considered as potential prognostic markers of this disease.

About the Authors

Yu. S. Timofeev
National Medical Research Center for Therapy and Preventive Medicine
Russian Federation

Yuriy S. Timofeev

Moscow



T. Yu. Vedenikin
Veresaev City Clinical Hospital
Russian Federation

Timofey Yu. Vedenikin

Moscow



A. R. Afaunova
National Medical Research Center for Therapy and Preventive Medicine
Russian Federation

Alina R. Afaunova 

Moscow



R. A. Zamyatin
National Medical Research Center for Therapy and Preventive Medicine
Russian Federation

Roman A. Zamyatin 

Moscow



V. A. Metelskaya
National Medical Research Center for Therapy and Preventive Medicine; Russian Medical Academy of Continuous Professional Education
Russian Federation

Victoria A. Metelskaya

Moscow



O. N. Dzhioeva
National Medical Research Center for Therapy and Preventive Medicine; Russian University of Medicine
Russian Federation

Olga N. Dzhioeva

Moscow



A. A. Ivanova
National Medical Research Center for Therapy and Preventive Medicine
Russian Federation

Anna A. Ivanova

Moscow



E. A. Neshkova
National Medical Research Center for Therapy and Preventive Medicine
Russian Federation

Elena A. Neshkova

Moscow



M. S. Pokrovskaya
National Medical Research Center for Therapy and Preventive Medicine
Russian Federation

Maria S. Pokrovskaya 

Moscow



O. M. Drapkina
National Medical Research Center for Therapy and Preventive Medicine
Russian Federation

Oksana M. Drapkina

Moscow



References

1. Liu M, Fang F, Yu C-M. Noncardiac Comorbidities in Heart Failure With preserved ejection fraction — commonly ignored fact. Circ J. 2015;79(5):954-9. doi:10.1253/circj.CJ-15-0056.

2. Heidenreich PA, Albert NM, Allen LA, et al. American Heart Association Advocacy Coordinating Committee; Council on Arteriosclerosis, Thrombosis and Vascular Biology; Council on Cardiovascular Radiology and Intervention; Council on Clinical Cardiology; Council on Epidemiology and Prevention; Stroke Council. Forecasting the impact of heart failure in the United States: a policy statement from the American Heart Association. Circ Heart Fail. 2013;6(3):606-19. doi:10.1161/HHF.0b013e318291329a.

3. Polyakov DS, Fomin IV, Belenkov YuN, et al. Chronic heart failure in the Russian Federation: what has changed over 20 years of follow-up? Results of the EPOCH-CHF study. Kardiologiia. 2021;61(4):4-14. (In Russ.) doi:10.18087/cardio.2021.4.n1628.

4. Vinogradova NG, Polyakov DS, Fomin IV. The risks of re-hospitalization of patients with heart failure with prolonged follow-up in a specialized center for the treatment of heart failure and in real clinical practice. Kardiologiia. 2020;60(3):59-69. (In Russ.) doi:10.18087/cardio.2020.3.n1002.

5. Oikonomou E, Vogiatzi G, Tsalamandris S, et al. Non-natriuretic peptide biomarkers in heart failure with preserved and reduced ejection fraction. Biomark Med. 2018;12(7): 783-97. doi:10.2217/bmm-2017-0376.

6. Nikiforova TA, Shchekochikhin DIu, Lomonosova AA, et al. Biomarkers role in the first decompensation of chronic heart failure with preserved left ventricular ejection fraction: 2-year follow-up. Russian Journal of Cardiology and Cardiovascular Surgery. 2017;10(6):46-51. (In Russ.) doi:10.17116/kardio201710646-51.

7. Ivanova AA, Dzhioeva ON, Lavrenova EA, et al. Diagnostic challenges of heart failure with preserved ejection fraction: focus on echocardiography. Cardiovascular Therapy and Prevention. 2023;22(5):3565. (In Russ.) doi:10.15829/1728-8800-2023-3565.

8. Rodríguez-Iturbe B, Johnson RJ. Heat shock proteins and cardiovascular disease. Physiol Int. 2018;105(1):19-37. doi:10.1556/2060.105.2018.1.4.

9. Kotova YuA, Zuikova AA. Study of markers of endothelial damage, oxidative and cellular stress in patients with IHD and concomitant obesity. Journal of New Medical Technologies. 2021;28(2):25-8. (In Russ.) doi:10.24412/1609-2163-2021-2-25-28.

10. Metelskaya VA, Timofeev YuS, Neshkova EA, et al. Inflammatory aging. Part 1. The principal biochemical mechanisms. Russian Journal of Preventive Medicine. 2024;27(12): 145-50. (In Russ.) doi:10.17116/profmed202427121145.

11. Hu C, Yang J, Qi Z, et al. Heat shock proteins: Biological functions, pathological roles, and therapeutic opportunities. MedComm (2020). 2022;3(3):e161. doi:10.1002/mco2.161.

12. Drapkina OM. The specific features of synthesis of heat shock proteins in patients with postinfarct cardiosclerosis. Klin Med (Mosk). 2004;82(9):25-8.

13. Zhou B, Tian R. Mitochondrial dysfunction in pathophysiology of heart failure. J Clin Invest. 2018;128(9):3716-26. doi:10.1172/JCI120849.

14. Gankovskaya LV, Ponasenko OA, Svitich OA. Role of heat shock protein 70 in pathogenesis of cardiovascular pathology. Medical Immunology. 2019;21(2):201-8. (In Russ.) doi:10.15789/1563-0625-2019-2-201-208.

15. Shan Q, Ma F, Wei J, et al. Physiological Functions of Heat Shock Proteins. Curr Protein Pept Sci. 2020;21(8):751-60. doi:10.2174/1389203720666191111113726.

16. Dubrez L, Causse S, Borges Bonan N, et al. Heat-shock proteins: chaperoning DNA repair. Oncogene. 2020;39(3):516-29. doi:10.1038/s41388-019-1016-y.

17. Sklifasovskaya AP, Blagonravov M, Ryabinina A, et al. The role of heat shock proteins in the pathogenesis of heart failure (Review). Int J Mol Med. 2023;52(5):106. doi:10.3892/ijmm.2023.5309.

18. Kovács D, Kovács M, Ahmed S, et al. Functional diversification of heat shock factors. Biol Futur. 2022;73(4):427-39. doi:10.1007/s42977-022-00138-z.

19. Kurop MK, Huyen CM, Kelly JH, et al. The heat shock response and small molecule regulators. Eur J Med Chem. 2021;226:113846. doi:10.1016/j.ejmech.2021.113846.

20. Muranova LK, Shatov VM, Gusev NB. Role of Small Heat Shock Proteins in the Remodeling of Actin Microfilaments. Biochemistry (Mosc). 2022;87(8):800-11. doi:10.1134/S0006297922080119.

21. Wu T, Mu Y, Bogomolovas J, et al. HSPB7 is indispensable for heart development by modulating actin filament assembly. Proc Natl Acad Sci USA. 2017;114(45):11956-61. doi:10.1073/pnas.1713763114.

22. 2020 Clinical practice guidelines for Chronic heart failure. Russian Journal of Cardiology. 2020;25(11):4083. (In Russ.) doi:10.15829/1560-4071-2020-4083.

23. Timofeev YuS, Afaunova AR, Ivanova AA, et al. Interaction of serum heat shock proteins' levels with the severity of venous congestion in patients with acute decompensated heart failure with preserved ejection fraction. Cardiovascular Therapy and Prevention. 2024;23(6):4037. (In Russ.) doi:10.15829/1728-8800-2024-4037.

24. Traxler D, Lainscak M, Simader E, et al. Heat shock protein 27 acts as a predictor of prognosis in chronic heart failure patients. Clin Chim Acta. 2017;473:127-32. doi:10.1016/j.cca.2017.08.028.

25. Hu YF, Yeh HI, Tsao HM, et al. Electrophysiological correlation and prognostic impact of heat shock protein 27 in atrial fibrillation. Circ Arrhythm Electrophysiol. 2012;5(2): 334-40. doi:10.1161/CIRCEP.111.965996.

26. Marion DMSV, Lanters EAH, Ramos KS, et al. Evaluating Serum Heat Shock Protein Levels as Novel Biomarkers for Atrial Fibrillation. Cells. 2020;16;9(9):2105. doi:10.3390/cells9092105.

27. Rigopoulos AG, Kalogeropoulos AS, Tsoporis JN, et al. Heat Shock Protein 70 Is Associated With Cardioversion Outcome and Recurrence of Symptomatic Recent Onset Atrial Fibrillation in Hypertensive Patients. J Cardiovasc Pharmacol. 2021;77(3):360-9. doi:10.1097/FJC.0000000000000962.

28. Desai SR, Dhindsa DS, Ko YA, et al. Aggregate Clinical and Biomarker-Based Model Predicts Adverse Outcomes in Patients With Coronary Artery Disease. Am J Cardiol. 2023;203:315-24. doi:10.1016/j.amjcard.2023.06.115.


Supplementary files

  • Determination of serum heat shock protein (HSP) levels is used for biochemical assessment of cellular stress activity.
  • Elevated concentrations of HSP70 and cardiovas­cular HSP are associated with worse prognosis in patients who have suffered acute decompensated HFpEF.

Review

For citations:


Timofeev Yu.S., Vedenikin T.Yu., Afaunova A.R., Zamyatin R.A., Metelskaya V.A., Dzhioeva O.N., Ivanova A.A., Neshkova E.A., Pokrovskaya M.S., Drapkina O.M. Heat shock proteins in the assessment of the course and prognosis of heart failure with preserved ejection fraction. Russian Journal of Cardiology. 2025;30(4):6317. (In Russ.) https://doi.org/10.15829/1560-4071-2025-6317. EDN: YHFXWZ

Views: 165


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1560-4071 (Print)
ISSN 2618-7620 (Online)