Hypertriglyceridemia — current status of the problem. Part I: risks, physiology and pathophysiological aspects, classification and diagnostic problems
https://doi.org/10.15829/1560-4071-2025-6179
EDN: EAZOZO
Abstract
Numerous studies demonstrate an independent relationship between an increase in the blood content of triglyceride-rich particles and the risk of atherosclerotic cardiovascular diseases and acute pancreatitis. This review article presents in detail aspects of the pathogenesis of various types of primary and most relevant secondary hypertriglyceridemias (HTGs). Classifications are provided depending on the etiology, phenotype of dyslipidemia and severity. Approaches to HTG diagnosis are described. Special attention is paid to the potential of HTG therapy.
About the Authors
A. A. SemenkinRussian Federation
Omsk
Competing Interests:
None
A. N. Meshkov
Russian Federation
Moscow
Competing Interests:
None
M. V. Yezhov
Russian Federation
Moscow
Competing Interests:
None
References
1. Carroll M, Kit B, Lacher D. Trends in elevated triglyceride in adults: United States, 2001-2012. NCHS Data Brief. 2015;(198):198.
2. Karpov Y, Khomitskaya Y. PROMETHEUS: an observational, cross-sectional, retrospective study of hypertriglyceridemia in Russia. Cardiovasc Diabetol. 2015;14:115. doi:10.1186/s12933-015-0268-2.
3. Meshkov AN, Ershova AI, Deev AD, et al. Distribution of lipid profile values in economically active men and women in russian federation: results of the ESSE-RF study for the years 2012-2014. Cardiovascular Therapy and Prevention. 2017;16(4):62-7. (In Russ.) doi:10.15829/1728-8800-2017-4-62-67.
4. Drapkina OM, Imaeva AE, Kutsenko VA, et al. Dyslipidemia in the Russian Federation: population data, associations with risk factors. Cardiovascular Therapy and Prevention. 2023;22(8S):3791. (In Russ.) doi:10.15829/1728-8800-2023-3791.
5. Jeppesen J, Hein HO, Suadicani P, Gyntelberg F. Triglyceride Concentration and Ischemic Heart Disease An Eight-Year Follow-up in the Copenhagen Male Study. Circulation. 1998;97(11):1029-36. doi:10.1161/01.cir.97.11.1029.
6. Sarwar N, Danesh J, Eiriksdottir G, et al. Triglycerides and the risk of coronary heart disease: 10,158 incident cases among 262,525 participants in 29 Western prospective studies. Circulation. 2007;115(4):450-8. doi:10.1161/CIRCULATIONAHA.106.637793.
7. Nichols GA, Philip S, Reynolds K, et al. Increased Cardiovascular Risk in Hypertriglyceridemic Patients With Statin-Controlled LDL Cholesterol. J Clin Endocrinol Metab. 2018;103(8):3019-27. doi:10.1210/jc.2018-00470.
8. Raposeiras-Roubin S, Rossello X, Oliva B, et al. Triglycerides and Residual Atherosclerotic Risk. J Am Coll Cardiol. 2021;77(24):3031-41. doi:10.1016/j.jacc.2021.04.059.
9. Patel RS, Pasea L, Soran H, et al. Elevated plasma triglyceride concentration and risk of adverse clinical outcomes in 1.5 million people: a CALIBER linked electronic health record study. Cardiovasc Diabetol. 2022;21(1):102. doi:10.1186/s12933-022-01525-5.
10. Zhu Y, Pan X, Zeng H, et al. A Study on the Etiology, Severity, and Mortality of 3260 Patients With Acute Pancreatitis According to the Revised Atlanta Classification in Jiangxi, China Over an 8-Year Period. Pancreas. 2017;46(4):504-9. doi:10.1097/MPA.0000000000000776.
11. Scherer J, Singh VP, Pitchumoni CS, Yadav D. Issues in hypertriglyceridemic pancreatitis: an update. J Clin Gastroenterol. 2014;48(3):195-203. doi:10.1097/01.mcg.0000436438.60145.5a.
12. Gaudet D, Blom D, Bruckert E, et al. Acute Pancreatitis is Highly Prevalent and Complications can be Fatal in Patients with Familial Chylomicronemia: Results from a Survey of Lipidologist. J Clin Lipidol. 2016;10:680-1. doi:10.1016/j.jacl.2016.03.048.
13. Ginsberg HN. Lipoprotein physiology. Endocrinol Metab Clin North Am. 1998;27(3): 503-19. doi:10.1016/s0889-8529(05)70023-2.
14. Severin SE. Biologicheskaya khimiya s upazhneniyami i zadachami. Severin SE edt. Moscow: GEOTAR-media, 2014. 624 p. (In Russ.) ISBN: 978-5-9704-3027-9.
15. Mach F, Baigent C, Catapano AL, et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Eur Heart J. 2020; 41(1):111-88. doi:10.1093/eurheartj/ehz455.
16. Feingold KR. Lipid and Lipoprotein Metabolism. Endocrinol Metab Clin North Am. 2022;51(3):437-58. doi:10.1016/j.ecl.2022.02.008.
17. Blasiole DA, Davis RA, Attie AD. The physiological and molecular regulation of lipoprotein assembly and secretion. Mol Biosyst. 2007;3(9):608-19. doi:10.1039/b700706j.
18. Dash S, Xiao C, Morgantini C, Lewis GF. New Insights into the Regulation of Chylomicron Production. Annu Rev Nutr. 2015;35:265-94. doi:10.1146/annurev-nutr-071714-034338.
19. Dominiczak MH, Caslake MJ. Apolipoproteins: metabolic role and clinical biochemistry applications. Ann Clin Biochem. 2011;48(Pt 6):498-515. doi:10.1258/acb.2011.011111.
20. Anant S, Davidson NO. Molecular mechanisms of apolipoprotein B mRNA editing. Curr Opin Lipidol. 2001;12(2):159-65. doi:10.1097/00041433-200104000-00009.
21. Gugliucci A. The chylomicron saga: time to focus on postprandial metabolism. Front Endocrinol (Lausanne). 2024;14:1322869. doi:10.3389/fendo.2023.1322869.
22. Pan X, Hussain MM. Gut triglyceride production. Biochim Biophys Acta. 2012;1821(5): 727-35. doi:10.1016/j.bbalip.2011.09.013.
23. Gibbons GF, Wiggins D, Brown AM, Hebbachi AM. Synthesis and function of hepatic very-low-density lipoprotein. Biochem Soc Trans. 2004;32(Pt 1):59-64. doi:10.1042/bst0320059.
24. Ramasamy I. Recent advances in physiological lipoprotein metabolism. Clin Chem Lab Med. 2014;52(12):1695-727. doi:10.1515/cclm-2013-0358.
25. Boren J, Taskinen MR, Packard CJ. Biosynthesis and Metabolism of ApoB-Containing Lipoproteins. Annu Rev Nutr. 2024;44(1):179-204. doi:10.1146/annurev-nutr-062222-020716.
26. Chen J, Fang Z, Luo Q, et al. Unlocking the mysteries of VLDL: exploring its production, intracellular trafficking, and metabolism as therapeutic targets. Lipids Health Dis. 2024;23(1):14. doi:10.1186/s12944-023-01993-y.
27. Tiwari S, Siddiqi SA. Intracellular trafficking and secretion of VLDL. Arterioscler Thromb Vasc Biol. 2012;32(5):1079-86. doi:10.1161/ATVBAHA.111.241471.
28. Wu SA, Kersten S, Qi L. Lipoprotein Lipase and Its Regulators: An Unfolding Story. Trends Endocrinol Metab. 2021;32(1):48-61. doi:10.1016/j.tem.2020.11.005.
29. Young SG, Fong LG, Beigneux AP, et al. GPIHBP1 and Lipoprotein Lipase, Partners in Plasma Triglyceride Metabolism. Cell Metab. 2019;30(1):51-65. doi:10.1016/j.cmet.2019.05.023.
30. Peterfy M, Ben-Zeev O, Mao HZ, et al. Mutations in LMF1 cause combined lipase deficiency and severe hypertriglyceridemia. Nat Genet. 2007;39(12):1483-7. doi:10.1038/ng.2007.24.
31. Beigneux AP, Davies BS, Gin P, et al. Glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 plays a critical role in the lipolytic processing of chylomicrons. Cell Metab. 2007;5(4):279-91. doi:10.1016/j.cmet.2007.02.002.
32. Wolska A, Reimund M, Remaley AT. Apolipoprotein C-II: the re-emergence of a forgotten factor. Curr Opin Lipidol. 2020;31(3):147-53. doi:10.1097/MOL.0000000000000680.
33. Mehta A, Shapiro MD. Apolipoproteins in vascular biology and atherosclerotic disease. Nat Rev Cardiol. 2022;19(3):168-79. doi:10.1038/s41569-021-00613-5.
34. Shu X, Nelbach L, Weinstein MM, et al. Intravenous injection of apolipoprotein A-V reconstituted high-density lipoprotein decreases hypertriglyceridemia in apoav-/-mice and requires glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1. Arterioscler Thromb Vasc Biol. 2010;30(12):2504-9. doi:10.1161/ATVBAHA.110.210815.
35. Merkel M, Loeffler B, Kluger M, et al. Apolipoprotein AV accelerates plasma hydrolysis of triglyceride-rich lipoproteins by interaction with proteoglycan-bound lipoprotein lipase. J Biol Chem. 2005;280(22):21553-60. doi:10.1074/jbc.M411412200.
36. Li Y, He PP, Zhang DW, et al. Lipoprotein lipase: from gene to atherosclerosis. Atherosclerosis. 2014;237(2):597-608. doi:10.1016/j.atherosclerosis.2014.10.016.
37. Yang Y, Konrad RJ, Ploug M, Young SG. APOA5 deficiency causes hypertriglyceridemia by reducing amounts of lipoprotein lipase in capillaries. J Lipid Res. 2024;65(7):100578. doi:10.1016/j.jlr.2024.100578.
38. Sniderman A, Couture P, de Graaf J. Diagnosis and treatment of apolipoprotein B dyslipoproteinemias. Nat Rev Endocrinol. 2010;6(6):335-46. doi:10.1038/nrendo.2010.50.
39. Ginsberg HN, Packard CJ, Chapman MJ, et al. Triglyceride-rich lipoproteins and their remnants: metabolic insights, role in atherosclerotic cardiovascular disease, and emerging therapeutic strategies-a consensus statement from the European Atherosclerosis Society. Eur Heart J. 2021;42(47):4791-806. doi:10.1093/eurheartj/ehab551.
40. Santamarina-Fojo S, González-Navarro H, Freeman L, et al. Hepatic lipase, lipoprotein metabolism, and atherogenesis. Arterioscler Thromb Vasc Biol. 2004;24(10):1750-4. doi:10.1161/01.ATV.0000140818.00570.2d.
41. Packard CJ, Boren J, Taskinen MR. Causes and Consequences of Hypertriglyceridemia. Front Endocrinol (Lausanne). 2020;11:252. doi:10.3389/fendo.2020.00252.
42. Williams KJ, Chen K. Recent insights into factors affecting remnant lipoprotein uptake. Curr Opin Lipidol. 2010;21(3):218-28. doi:10.1097/MOL.0b013e328338cabc.
43. Veniant MM, Zlot CH, Walzem RL, et al. Lipoprotein clearance mechanisms in LDL receptor-deficient "Apo-B48-only" and "Apo-B100-only" mice. J Clin Invest. 1998;102(8):1559-68. doi:10.1172/JCI4164.
44. Bradley WA, Hwang SL, Karlin JB, et al. Low-density lipoprotein receptor binding determinants switch from apolipoprotein E to apolipoprotein B during conversion of hypertriglyceridemic very-low-density lipoprotein to low-density lipoproteins. J Biol Chem. 1984;10;259(23):14728-35.
45. Koopal C, Marais AD, Westerink J, Visseren FL. Autosomal dominant familial dysbetalipoproteinemia: A pathophysiological framework and practical approach to diagnosis and therapy. J Clin Lipidol. 2017;11(1):12-23.e1. doi:10.1016/j.jacl.2016.10.001.
46. Marais AD. Apolipoprotein E in lipoprotein metabolism, health and cardiovascular disease. Pathology. 2019;51(2):165-76. doi:10.1016/j.pathol.2018.11.002.
47. Mahley RW, Rall SC Jr. Apolipoprotein E: far more than a lipid transport protein. Annu Rev Genomics Hum Genet. 2000;1:507-37. doi:10.1146/annurev.genom.1.1.507.
48. Recazens E, Mouisel E, Langin D. Hormone-sensitive lipase: sixty years later. Prog Lipid Res. 2021;82:101084. doi:10.1016/j.plipres.2020.101084.
49. Malmstrom R, Packard CJ, Caslake M, et al. Effects of insulin and acipimox on VLDL1 and VLDL2 apolipoprotein B production in normal subjects. Diabetes. 1998;47(5):779-87. doi:10.2337/diabetes.47.5.779.
50. Verges B. Abnormal hepatic apolipoprotein B metabolism in type 2 diabetes. Atherosclerosis. 2010;211(2):353-60. doi:10.1016/j.atherosclerosis.2010.01.028.
51. Robinson DS, Speake BK. Role of insulin and other hormones in the control of lipoprotein lipase activity. Biochem Soc Trans. 1989;17(1):40-2. doi:10.1042/bst0170040.
52. Chen M, Breslow JL, Li W, Leff T. Transcriptional regulation of the apoC-III gene by insulin in diabetic mice: correlation with changes in plasma triglyceride levels. J Lipid Res. 1994;35(11):1918-24.
53. Laatsch A, Merkel M, Talmud PJ, et al. Insulin stimulates hepatic low density lipoprotein receptor-related protein 1 (LRP1) to increase postprandial lipoprotein clearance. Atherosclerosis. 2009;204(1):105-11. doi:10.1016/j.atherosclerosis.2008.07.046.
54. Nordestgaard BG. Triglyceride-Rich Lipoproteins and Atherosclerotic Cardiovascular Disease: New Insights From Epidemiology, Genetics, and Biology. Circ Res. 2016;118(4): 547-63. doi:10.1161/CIRCRESAHA.115.306249.
55. Boren J, Chapman MJ, Krauss RM, et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease: pathophysiological, genetic, and therapeutic insights: a consensus statement from the European Atherosclerosis Society Consensus Panel. Eur Heart J. 2020;41(24):2313-30. doi:10.1093/eurheartj/ehz962.
56. Brown ML, Ramprasad MP, Umeda PK, et al. A macrophage receptor for apolipoprotein B48: cloning, expression, and atherosclerosis. Proc Natl Acad Sci U S A. 2000;97(13): 7488-93. doi:10.1073/pnas.120184097.
57. Takahashi S, Sakai J, Fujino T, et al. The very low-density lipoprotein (VLDL) receptor: characterization and functions as a peripheral lipoprotein receptor. J Atheroscler Thromb. 2004;11(4):200-8. doi:10.5551/jat.11.200.
58. Llorente-Cortes V, Badimon L. LDL receptor-related protein and the vascular wall: implications for atherothrombosis. Arterioscler Thromb Vasc Biol. 2005;25(3):497-504. doi:10.1161/01.ATV.0000154280.62072.fd.
59. Paquette M, Bernard S, Hegele RA, Baass A. Chylomicronemia: Differences between familial chylomicronemia syndrome and multifactorial chylomicronemia. Atherosclerosis. 2019;283:137-42. doi:10.1016/j.atherosclerosis.2018.12.019.
60. O'Dea LSL, MacDougall J, Alexander VJ, et al. Differentiating Familial Chylomicronemia Syndrome From Multifactorial Severe Hypertriglyceridemia by Clinical Profiles. J Endocr Soc. 2019;3(12):2397-410. doi:10.1210/js.2019-00214.
61. Belhassen M, Van Ganse E, Nolin M, et al. 10-Year Comparative Follow-up of Familial versus Multifactorial Chylomicronemia Syndromes. J Clin Endocrinol Metab. 2021; 106(3):e1332-e1342. doi:10.1210/clinem/dgaa838.
62. Stahel P, Xiao C, Hegele RA, Lewis GF. The Atherogenic Dyslipidemia Complex and Novel Approaches to Cardiovascular Disease Prevention in Diabetes. Can J Cardiol. 2018;34(5):595-604. doi:10.1016/j.cjca.2017.12.007.
63. Berneis KK, Krauss RM. Metabolic origins and clinical significance of LDL heterogeneity. J Lipid Res. 2002;43(9):1363-79. doi:10.1194/jlr.r200004-jlr200.
64. Rashid S, Watanabe T, Sakaue T, Lewis GF. Mechanisms of HDL lowering in insulin resistant, hypertriglyceridemic states: the combined effect of HDL triglyceride enrichment and elevated hepatic lipase activity. Clin Biochem. 2003;36(6):421-9. doi:10.1016/s0009-9120(03)00078-x.
65. Hirano T. Pathophysiology of Diabetic Dyslipidemia. J Atheroscler Thromb. 2018;25(9): 771-82. doi:10.5551/jat.RV17023.
66. Srivastava RAK. Dysfunctional HDL in diabetes mellitus and its role in the pathogenesis of cardiovascular disease. Mol Cell Biochem. 2018;440(1-2):167-87. doi:10.1007/s11010-017-3165-z.
67. Diffenderfer MR, Schaefer EJ. The composition and metabolism of large and small LDL. Curr Opin Lipidol. 2014;25(3):221-6. doi:10.1097/MOL.0000000000000067.
68. Kiss L, Fűr G, Pisipati S, et al. Mechanisms linking hypertriglyceridemia to acute pancreatitis. Acta Physiol (Oxf). 2023;237(3):e13916. doi:10.1111/apha.13916.
69. Virani SS, Morris PB, Agarwala A, et al. 2021 ACC Expert Consensus Decision Pathway on the Management of ASCVD Risk Reduction in Patients With Persistent Hypertriglyceridemia: A Report of the American College of Cardiology Solution Set Oversight Committee. J Am Coll Cardiol. 2021;78(9):960-93. doi:10.1016/j.jacc.2021.06.011.
70. Beaumont JL, Carlson LA, Cooper GR, et al. Classification of hyperlipidaemias and hyperlipoproteinaemias. Bull World Health Organ. 1970;43(6):891-915.
71. Koopal C, Marais AD, Visseren FL. Familial dysbetalipoproteinemia: an underdiagnosed lipid disorder. Curr Opin Endocrinol Diabetes Obes. 2017;24(2):133-9. doi:10.1097/MED.0000000000000316.
72. Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem. 1972;18(6):499-502.
73. Martin SS, Blaha MJ, Elshazly MB, et al. Comparison of a novel method vs the Friedewald equation for estimating low-density lipoprotein cholesterol levels from the standard lipid profile. JAMA. 2013;310(19):2061-8. doi:10.1001/jama.2013.280532.
74. Sampson M, Ling C, Sun Q, et al. A New Equation for Calculation of Low-Density Lipoprotein Cholesterol in Patients With Normolipidemia and/or Hypertriglyceridemia. JAMA Cardiol. 2020;5(5):540-8. doi:10.1001/jamacardio.2020.0013.
75. Raja V, Aguiar C, Alsayed N, et al. Non-HDL-cholesterol in dyslipidemia: Review of the state-of-the-art literature and outlook. Atherosclerosis. 2023;383:117312. doi:10.1016/j.atherosclerosis.2023.117312.
76. Glavinovic T, Thanassoulis G, de Graaf J, et al. Physiological Bases for the Superiority of Apolipoprotein B Over Low-Density Lipoprotein Cholesterol and Non-High-Density Lipoprotein Cholesterol as a Marker of Cardiovascular Risk. J Am Heart Assoc. 2022;11(20):e025858. doi:10.1161/JAHA.122.025858.
77. Blom DJ, O'Dea L, Digenio A, et al. Characterizing familial chylomicronemia syndrome: Baseline data of the APPROACH study. J Clin Lipidol. 2018;12(5):1234-1243.e5. doi:10.1016/j.jacl.2018.05.013.
78. Elovson J, Chatterton JE, Bell GT, et al. Plasma very low density lipoproteins contain a single molecule of apolipoprotein B. J Lipid Res. 1988;29(11):1461-73.
79. Di Angelantonio E, Sarwar N, Perry P, et al. Major lipids, apolipoproteins, and risk of vascular disease. JAMA. 2009;302(18):1993-2000. doi:10.1001/jama.2009.1619.
80. Blom DJ, Byrnes P, Jones S, Marais AD. Non-denaturing polyacrylamide gradient gel electrophoresis for the diagnosis of dysbetalipoproteinemia. J Lipid Res. 2003;44(1): 212-7. doi:10.1194/jlr.d200013-jlr200.
81. Sampson M, Ballout RA, Soffer D, et al. A new phenotypic classification system for dyslipidemias based on the standard lipid panel. Lipids Health Dis. 2021;20(1):170. doi:10.1186/s12944-021-01585-8.
82. Boot CS, Middling E, Allen J, Neely RDG. Evaluation of the non-HDL cholesterol to apolipoprotein B ration as a screening test for dysbetalipoproteinemia. Clin Chem. 2019;65(2):313-20. doi:10.1373/clinchem.2018.292425.
83. Moulin P, Dufour R, Averna M, et al. Identification and diagnosis of patients with familial chylomicronaemia syndrome (FCS): Expert panel recommendations and proposal of an "FCS score". Atherosclerosis. 2018;275:265-72. doi:10.1016/j.atherosclerosis.2018.06.814.
84. Bashir B, Kwok S, Wierzbicki AS, et al. Validation of the familial chylomicronaemia syndrome (FCS) score in an ethnically diverse cohort from UK FCS registry: Implications for diagnosis and differentiation from multifactorial chylomicronaemia syndrome (MCS). Atherosclerosis. 2024;391:117476. doi:10.1016/j.atherosclerosis.2024.117476.
Supplementary files
- Hypertriglyceridemia is associated with an increased risk of cardiovascular events and acute and chronic pancreatitis.
- The profile of triglyceride-rich lipoproteins, the pathogenesis of lipid disorders and hypertriglyceridemia-associated risks vary significantly, which requires differentiated approaches to diagnosis and treatment.
Review
For citations:
Semenkin A.A., Meshkov A.N., Yezhov M.V. Hypertriglyceridemia — current status of the problem. Part I: risks, physiology and pathophysiological aspects, classification and diagnostic problems. Russian Journal of Cardiology. 2025;30(1):6179. (In Russ.) https://doi.org/10.15829/1560-4071-2025-6179. EDN: EAZOZO