Preview

Russian Journal of Cardiology

Advanced search

Comparative analysis of standard indices of myocardial perfusion scintigraphy and quantitative indicators of myocardial dynamic single-photon emission computed tomography in patients with non-obstructive coronary artery disease

https://doi.org/10.15829/1560-4071-2024-6166

EDN: ZWRBDF

Abstract

Aim. To compare standard indices of myocardial perfusion scintigraphy (MPS) and quantitative indicators of myocardial dynamic single-photon emission computed tomography (SPECT) in patients with non-obstructive coronary artery disease (NOCAD).

Material and methods. The study included patients with symptoms or signs of myocardial ischemia and NOCAD (<50%). All patients underwent dynamic myocardial SPECT with assessment of standard MPS indices (summed stress score (SSS), summed rest score (SRS), summed difference score (SDS)) and quantitative indicators (stress and rest myocardial blood flow (MBF), myocardial flow reserve (MFR) and stress/rest MBF difference (ΔMBF)).

Results. According to MPS, 15 (26%) patients had signs of myocardial perfusion dysfunction (SSS ≥2,0). Standard MPS indices had low values as follows: SSS 0,0 (0,0; 2,0), SRS 0,0 (0,0; 0,0), SDS 0,0 (0,0; 2,0). According to dynamic myocardial SPECT, 22 (38%) patients had a reduced MFR <2,0. Quantitative indicators were characterized by greater variability compared to the MPS data as follows: stress MBF 1,34 (1,03; 1,64) ml/min/g, rest MBF 0,58 (0,42; 0,73) ml/min/g, MFR 2,42 (1,48; 2,85), ΔMBF 0,68 (0,36; 1,09). In 7 (12%) patients, ischemic myocardial changes (SSS ≥2,0) was associated with a reduced MFR <2,0, and in 28 (48%) without signs of ischemia (SSS <2,0) the MFR was within normal values ≥2,0. However, 15 (26%) had a normal radiopharmaceutical distribution and a reduced MFR, which may indicate the initial stages of microvascular dysfunction, which did not lead to myocardial ischemia.

Conclusion. The dynamic SPECT allows in ~30% of cases to identify MBF and MFR disorders in NOCAD patients with normal results of standard SFM.

About the Authors

A. N. Maltseva
Cardiology Research Institute, Tomsk National Research Medical Center
Russian Federation

Tomsk


Competing Interests:

None



A. V. Mochula
Cardiology Research Institute, Tomsk National Research Medical Center
Russian Federation

Tomsk


Competing Interests:

None



E. V. Grakova
Cardiology Research Institute, Tomsk National Research Medical Center
Russian Federation

Tomsk


Competing Interests:

None



K. V. Kopyeva
Cardiology Research Institute, Tomsk National Research Medical Center
Russian Federation

Tomsk


Competing Interests:

None



A. A. Tsygikalo
Cardiology Research Institute, Tomsk National Research Medical Center
Russian Federation

Tomsk


Competing Interests:

None



K. V. Zavadovsky
Cardiology Research Institute, Tomsk National Research Medical Center
Russian Federation

Tomsk


Competing Interests:

None



References

1. Hansen B, Holtzman JN, Juszczynski C, et al. Ischemia with No Obstructive Arteries (INOCA): A Review of the Prevalence, Diagnosis and Management. Curr Probl Cardiol. 2023;48(1):101420. doi:10.1016/j.cpcardiol.2022.101420.

2. Padro T, Manfrini O, Bugiardini R, et al. ESC Working Group on Coronary Pathophysiology and Microcirculation position paper on 'coronary microvascular dysfunction in cardiovascular disease'. Cardiovasc Res. 2020;116(4):741-55. doi:10.1093/cvr/cvaa003.

3. Vrints C, Andreotti F, Koskinas KC, et al. 2024 ESC Guidelines for the management of chronic coronary syndromes. Eur Heart J. 2024;45(36):3415-537. doi:10.1093/eurheartj/ehae177.

4. Barbarash OL, Karpov YuA, Panov AV, et al. 2024 Clinical practice guidelines for Stable coronary artery disease. Russian Journal of Cardiology. 2024;29(9):6110. (In Russ.) doi:10.15829/1560-4071-2024-6110.

5. De Souza ACDAH, Gonçalves BKD, Tedeschi AL, et al. Quantification of myocardial flow reserve using a gamma camera with solid-state cadmium-zinc-telluride detectors: Relation to angiographic coronary artery disease. J Nucl Cardiol. 2021;28(3):876-84. doi:10.1007/s12350-019-01775-z.

6. Han S, Kim YH, Ahn JM, et al. Feasibility of dynamic stress 201Tl/rest 99mTc-tetrofosmin single photon emission computed tomography for quantification of myocardial perfusion reserve in patients with stable coronary artery disease. Eur J Nucl Med Mol Imaging. 2018;45(12):2173-80. doi:10.1007/s00259-018-4057-5.

7. Agostini D, Roule V, Nganoa C, et al. First validation of myocardial flow reserve assessed by dynamic 99mTc-sestamibi CZT-SPECT camera: head to head comparison with 15O-water PET and fractional flow reserve in patients with suspected coronary artery disease. The WATERDAY study. Eur J Nucl Med Mol Imaging. 2018;45(7):1079-90. doi:10.1007/s00259-018-3958-7.

8. Ferenczi P, Couffinhal T, Mamou A, et al. Myocardial blood flows and reserves on solid state camera: Correlations with coronary history and cardiovascular risk factors. J Nucl Cardiol. 2022;29(4):1671-8. doi:10.1007/s12350-021-02659-x.

9. Sampietro T, Sbrana F, Dal Pino B, et al. Coronary microcirculatory blood flow significantly increases upon acute and chronic cholesterol lowering: evaluation by cadmium-zinc-telluride cardiac imaging stress test. Eur J Prev Cardiol. 2022;29(8):e272-e274. doi:10.1093/eurjpc/zwac043.

10. Mochula AV, Kopeva KV, Maltseva AN, et al. The myocardial flow reserve in patients with heart failure with preserved ejection fraction. Heart Vessels. 2023;38(3):348-60. doi:10.1007/s00380-022-02161-5.

11. Mochula AV, Mochula OV, Maltseva AN, et al. Quantitative assessment of myocardial blood fl ow by dynamic single photon emission computed tomography: relationship with ECG changes and biochemical markers of damage in patients with acute myocardial infarction. The Siberian Journal of Clinical and Experimental Medicine. 2023;38(3):66-74. (In Russ.) doi:10.29001/2073-8552-2023-38-3-66-74.

12. Arsanjani R, Hayes SW, Fish M, et al. Two-position supine/prone myocardial perfusion SPECT (MPS) imaging improves visual inter-observer correlation and agreement. J Nucl Cardiol. 2014;21(4):703-11. doi:10.1007/s12350-014-9895-3.

13. Murthy VL, Naya M, Foster CR, et al. Improved cardiac risk assessment with noninvasive measures of coronary flow reserve. Circulation. 2011;124(20):2215-24. doi:10.1161/CIRCULATIONAHA.111.050427.

14. Miyagawa M, Nishiyama Y, Uetani T, et al. Estimation of myocardial flow reserve utilizing an ultrafast cardiac SPECT: Comparison with coronary angiography, fractional flow reserve, and the SYNTAX score. Int J Cardiol. 2017;244:347-53. doi:10.1016/j.ijcard.2017.06.012.

15. Freitag MT, Bremerich J, Wild D, et al. Quantitative myocardial perfusion 82Rb-PET assessed by hybrid PET/coronary-CT: Normal values and diagnostic performance. J Nucl Cardiol. 2022;29(2):464-73. doi:10.1007/s12350-020-02264-4.

16. Kawaguchi N, Okayama H, Kido T, et al. Clinical significance of corrected relative flow reserve derived from 13N-ammonia positron emission tomography combined with coronary computed tomography angiography. J Nucl Cardiol. 2021;28(5):1851-60. doi:10.1007/s12350-019-01931-5.

17. Maltseva AN, Kopeva KV, Mochula AV, et al. Association of impaired myocardial flow reserve with risk factors for cardiovascular diseases in patients with nonobstructive coronary artery disease. Russian Journal of Cardiology. 2023;28(2):5158. (In Russ.) doi:10.15829/1560-4071-2023-5158.

18. Maltseva AN, Kopeva KV, Mochula AV, et al. Association of Calcium Index and Myocardial Blood Flow in Non-Obstructive Atherosclerotic Lesion of the Coronary Arteries. Annals of the Russian Academy of Medical Sciences. 2023;78(2):85-95. (In Russ.) doi:10.15690/vramn3513.


Supplementary files

  • Patients with non-obstructive coronary artery disease may have reduced myocardial flow reserve in ~40% of cases, as determined by dynamic myocardial single-photon emission computed tomography (SPECT).
  • Dynamic myocardial SPECT allows ~30% identification of microvascular dysfunction in patients with non-obstructive coronary artery disease and normal results of standard myocardial perfusion scintigraphy.

Review

For citations:


Maltseva A.N., Mochula A.V., Grakova E.V., Kopyeva K.V., Tsygikalo A.A., Zavadovsky K.V. Comparative analysis of standard indices of myocardial perfusion scintigraphy and quantitative indicators of myocardial dynamic single-photon emission computed tomography in patients with non-obstructive coronary artery disease. Russian Journal of Cardiology. 2024;29(12):6166. (In Russ.) https://doi.org/10.15829/1560-4071-2024-6166. EDN: ZWRBDF

Views: 176


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1560-4071 (Print)
ISSN 2618-7620 (Online)