Features of the atherosclerotic plaque microbiome in patients after carotid endarterectomy
https://doi.org/10.15829/1560-4071-2024-6145
EDN: VENBZB
Abstract
Aim. To study the microbiome of atherosclerotic plaque biopsies in patients who underwent carotid endarterectomy (CEA).
Material and methods. In this study, the microbiota profile of 76 atherosclerotic plaque samples obtained during CEA was analyzed using high-throughput sequencing of 16S rRNA V4 region. The proportion of patients without restenosis included in the study was 20%. The median follow-up of patients was 1,9 years (range, 1,4-2,25).
Results. Taxonomic analysis revealed that the plaque microbiome is characterized by a wide diversity of gram-negative bacteria, including bacteria that are widespread in the environment. Bacteria most represented in plaques belong to four following families: Caulobacteraceae, Rhizobiaceae, Sphingobacteriaceae and Weeksellaceae. Linear discriminant analysis Effect Size (LEfSe) revealed a significantly higher representation of the microbial marker OTU_21, belonging to the Sphingomonadaceae family, in the atherosclerotic plaque microbiome of patients with ≥50% restenosis and Cloacibacterium (OTU_67), belonging to the Weeksellaceae family, in patients with >70% restenosis.
Conclusion. The obtained data emphasize the importance of studying the atherosclerotic plaque microbiome and suggest that microorganisms of various origins, including those that have not previously been considered as risk factors, can play a pathogenetic role in both atherogenesis and restenosis.
Keywords
About the Authors
E. P. KolesovaRussian Federation
St. Petersburg
Competing Interests:
None
M. A. Chernyavsky
Russian Federation
St. Petersburg
Competing Interests:
None
A. G. Vanyurkin
Russian Federation
St. Petersburg
Competing Interests:
None
E. V. Verkhovskaya
Russian Federation
St. Petersburg
Competing Interests:
None
E. K. Zaykova
Russian Federation
St. Petersburg
Competing Interests:
None
O. V. Kalinina
Russian Federation
St. Petersburg
Competing Interests:
None
S. I. Sitkin
Russian Federation
St. Petersburg
Competing Interests:
None
A. L. Maslyansky
Russian Federation
St. Petersburg
Competing Interests:
None
V. V. Kvan
Russian Federation
St. Petersburg
Competing Interests:
None
E. Yu. Vasilyeva
Russian Federation
St. Petersburg
Competing Interests:
None
A. N. Yakovlev
Russian Federation
St. Petersburg
Competing Interests:
None
A. Yu. Babenko
Russian Federation
St. Petersburg
Competing Interests:
None
A. O. Konradi
Russian Federation
St. Petersburg
Competing Interests:
None
E. V. Shlyakhto
Russian Federation
St. Petersburg
Competing Interests:
None
References
1. Heck D, Jost A. Carotid stenosis, stroke, and carotid artery revascularization. Prog Cardiovasc Dis. 2021;65:49-54. doi:10.1016/j.pcad.2021.03.005.
2. Feigin VL, Stark BA, Johnson CO, et al. Global, regional, and national burden of stroke and its risk factors, 1990-2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurol. 2021;20(10):1-26. doi:10.1016/S1474-4422(21)00252-0.
3. Aboyans V, Björck M, Brodmann M, et al.; ESC Scientific Document Group. Questions and answers on diagnosis and management of patients with Peripheral Arterial Diseases: a companion document of the 2017 ESC Guidelines for the Diagnosis and Treatment of Peripheral Arterial Diseases, in collaboration with the European Society for Vascular Surgery (ESVS): Endorsed by: the European Stroke Organisation (ESO) The Task Force for the Diagnosis and Treatment of Peripheral Arterial Diseases of the European Society of Cardiology (ESC) and of the European Society for Vascular Surgery (ESVS). Eur Heart J. 2018;39(9):e35-e41. doi:10.1093/eurheartj/ehx499.
4. Zhou F, Hua Y, Ji X, et al. A systemic review into carotid plaque features as predictors of restenosis after carotid endarterectomy. J Vasc Surg. 2021;73(6):2179-88.e4. doi:10.1016/j.jvs.2020.10.084.
5. Rosenfeld ME, Campbell LA. Pathogens and atherosclerosis: update on the potential contribution of multiple infectious organisms to the pathogenesis of atherosclerosis. Thromb Haemost. 2011;106(5):858-67. doi:10.1160/TH11-06-0392.
6. Lanter BB, Sauer K, Davies DG. Bacteria present in carotid arterial plaques are found as biofilm deposits which may contribute to enhanced risk of plaque rupture. mBio. 2014;5(3):e01206-14. doi:10.1128/mBio.01206-14.
7. Ott SJ, El Mokhtari NE, Musfeldt M, et al. Detection of diverse bacterial signatures in atherosclerotic lesions of patients with coronary heart disease. Circulation. 2006; 113(7):929-37. doi:10.1161/CIRCULATIONAHA.105.579979.
8. Fiehn NE, Larsen T, Christiansen N, et al. Identification of periodontal pathogens in atherosclerotic vessels. J Periodontol. 2005;76(5):731-6. doi:10.1902/jop.2005.76.5.731.
9. Mitra S, Drautz-Moses DI, Alhede M, et al. In silico analyses of metagenomes from human atherosclerotic plaque samples. Microbiome. 2015;3:38. doi:10.1186/s40168-015-0100-y.
10. Chernyavsky MA, Irtyuga OB, Yanishevsky SN, et al. Russian consensus statement on the diagnosis and treatment of patients with carotid stenosis. Russian Journal of Cardiology. 2022;27(11):5284. (In Russ.) Чернявский М. А., Иртюга О. Б., Янишевский С. Н. и др. Российский консенсус по диагностике и лечению пациентов со стенозом сонных артерий. Российский кардиологический журнал. 2022;27(11):5284. doi:10.15829/1560-4071-2022-5284.
11. Ewels P, Magnusson M, Lundin S, et al. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics. 2016;32(19):3047-8. doi:10.1093/bioinformatics/btw354.
12. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114-20. doi:10.1093/bioinformatics/btu170.
13. Callahan BJ, McMurdie PJ, Rosen MJ, et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13(7):581-3. doi:10.1038/nmeth.3869.
14. Mirdita M, Steinegger M, Breitwieser F, et al. Fast and sensitive taxonomic assignment to metagenomic contigs. Bioinformatics. 2021;37(18):3029-31. doi:10.1093/bioinformatics/btab184.
15. McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One. 2013;8(4):e61217. doi:10.1371/journal.pone.0061217.
16. Cao Y, Dong Q, Wang D, et al. microbiomeMarker: an R/Bioconductor package for microbiome marker identification and visualization. Bioinformatics. 2022;38(16):4027-9. doi:10.1093/bioinformatics/btac438.
17. Abraham W-R, Rohde M, Bennasar A. The Family Caulobacteraceae. In: Rosenberg E, DeLong EF, Lory S. The Prokaryotes: Alphaproteobacteria and Betaproteobacteria. 4th ed. Springer. 2014:179-205. ISBN: 978-3-642-30197-1. doi:10.1007/978-3-642-30197-1_259.
18. Amar J, Lelouvier B, Servant F, et al. Blood Microbiota Modification After Myocardial Infarction Depends Upon Low-Density Lipoprotein Cholesterol Levels. J Am Heart Assoc. 2019;8(19):e011797. doi:10.1161/JAHA.118.011797.
19. Colombi E, Perry BJ, Sullivan JT, et al. Comparative analysis of integrative and conjugative mobile genetic elements in the genus Mesorhizobium. Microb Genom. 2021;7(10): 000657. doi:10.1099/mgen.0.000657.
20. Aujoulat F, Marchandin H, Zorgniotti I, et al. Rhizobium pusense is the main human pathogen in the genus Agrobacterium/Rhizobium. Clin Microbiol Infect. 2015;21(5):472. e1-5. doi:10.1016/j.cmi.2014.12.005.
21. Isoshima D, Yamashiro K, Matsunaga K, et al. Microbiome composition comparison in oral and atherosclerotic plaque from patients with and without periodontitis. Odontology. 2021;109(1):239-49. doi:10.1007/s10266-020-00524-w.
22. Zubova KV. The order Flavobacteriales: ecological features and clinical significance in the development of human pathology: review. Bulletin of the Perm University. Biology. 2023;1:58-64. (In Russ.) doi:10.17072/1994-9952-2023-1-58-64.
23. Glaeser SP, Kämpfer P. The Family Sphingomonadaceae. In: Rosenberg E, DeLong EF, Lory S. The Prokaryotes: Alphaproteobacteria and Betaproteobacteria. 4th ed. Springer. 2014:641-707. ISBN: 978-3-642-30197-1. doi:10.1007/978-3-642-30197-1_302.
24. Sanapareddy N, Legge RM, Jovov B, et al. Increased rectal microbial richness is associated with the presence of colorectal adenomas in humans. ISME J. 2012;6(10):1858-68. doi:10.1038/ismej.2012.43.
25. Chiodini RJ, Dowd SE, Chamberlin WM, et al. Microbial Population Differentials between Mucosal and Submucosal Intestinal Tissues in Advanced Crohn's Disease of the Ileum. PLoS One. 2015;10(7):e0134382. doi:10.1371/journal.pone.0134382.
26. Dewayani A, Afrida Fauzia K, Alfaray RI, et al. Gastric microbiome changes in relation with Helicobacter pylori resistance. PLoS One. 2023;18(5):e0284958. doi:10.1371/journal.pone.0284958.
27. Khan S, Banerjee G, Setua S, et al. Metagenomic analysis unveils the microbial landscape of pancreatic tumors. Front Microbiol. 2023;14:1275374. doi:10.3389/fmicb.2023.1275374.
28. Mouradov D, Greenfield P, Li S, et al. Oncomicrobial Community Profiling Identifies Clinicomolecular and Prognostic Subtypes of Colorectal Cancer. Gastroenterology. 2023; 165(1):104-20. doi:10.1053/j.gastro.2023.03.205.
29. Winters AD, Romero R, Gervasi MT, et al. Does the endometrial cavity have a molecular microbial signature? Sci Rep. 2019;9(1):9905. doi:10.1038/s41598-019-46173-0.
30. Ellis JE, Missan DS, Shabilla M, et al. Microbial community profiling of peripheral blood in myalgic encephalomyelitis/chronic fatigue syndrome. Human Microbiome Journal. 2018;9:16-21. doi:10.1016/j.humic.2018.05.003.
31. Tozzo P, Delicati A, Caenazzo L. Skin Microbial Changes during Space Flights: A Systematic Review. Life (Basel). 2022;12(10):1498. doi:10.3390/life12101498.
32. Ko YK, Kim E, Lee EJ, et al. Enrichment of infection-associated bacteria in the low biomass brain bacteriota of Alzheimer's disease patients. PLoS One. 2024;19(2): e0296307. doi:10.1371/journal.pone.0296307.
33. Brun A, Nuzzo A, Prouvost B, et al. Oral microbiota and atherothrombotic carotid plaque vulnerability in periodontitis patients. A cross-sectional study. J Periodontal Res. 2021;56(2):339-50. doi:10.1111/jre.12826.
34. Brochado-Kith O, Rava M, Berenguer J, et al.; Escorial Study Group. Altered blood microbiome in patients with HCV-related Child-Pugh class B cirrhosis. J Infect Public Health. 2024;17(10):102524. doi:10.1016/j.jiph.2024.102524.
Supplementary files
- Using the high-throughput sequencing of the 16SrRNA V4 region, the microbiota profile of 76 samples of atherosclerotic plaques obtained during carotid endarterectomy was analyzed, and taxonomic differences between the groups of patients with developed postoperative restenosis and without restenosis were determined.
- Four following bacterial families were the most represented: Caulobacteraceae, Rhizobiaceae, Sphingobacteriaceaeand Weeksellaceae.
- Linear discriminant analysis Effect Size (LEfSe) revealed a significantly higher representation of the microbial marker OTU_21, belonging to the Sphingomonadaceaefamily, in patients with restenosis ≥50%, as well as Cloacibacterium(OTU_67), belonging to the Weeksellaceae family, in patients with restenosis >70%.
- The detection of a wide variety of Gram-negative bacteria in plaque, including those widely distributed in the environment, indicates a potential role of microorganisms of different origins in both plaque and restenosis development.
Review
For citations:
Kolesova E.P., Chernyavsky M.A., Vanyurkin A.G., Verkhovskaya E.V., Zaykova E.K., Kalinina O.V., Sitkin S.I., Maslyansky A.L., Kvan V.V., Vasilyeva E.Yu., Yakovlev A.N., Babenko A.Yu., Konradi A.O., Shlyakhto E.V. Features of the atherosclerotic plaque microbiome in patients after carotid endarterectomy. Russian Journal of Cardiology. 2024;29(12):6145. (In Russ.) https://doi.org/10.15829/1560-4071-2024-6145. EDN: VENBZB