Preview

Russian Journal of Cardiology

Advanced search

Impact of systemic inflammatory response activation on the risk of coronary conduit dysfunction and the incidence of cardiovascular events after coronary artery bypass grafting

https://doi.org/10.15829/15604071-2025-6112

EDN: VPJVMG

Abstract

Aim. To assess the influence of systemic inflammatory response activation on the incidence of coronary conduit dysfunction and the risk of cardiovascular events after coronary artery bypass grafting, as well as to identify the most significant humoral markers.

Material and methods. The study included 84 patients with stable coronary artery disease who underwent examination and isolated coronary artery bypass grafting (CABG). Humoral inflammation markers were assessed before surgery, 24 hours and 7 days after CABG. Control coronary bypass angiography was performed intraoperatively and 1 year after CABG. An analysis of clinical and paraclinical data was performed in two following groups: Group 1 — patients (n=10) diagnosed with bypass graft dysfunction (D+) during control bypass angiography 1 year after surgery; Group 2 — patients (n=74) without bypass graft dysfunction (D-) according to control bypass angiography 1 year after CABG.

Results. Coronary conduit dysfunction was detected in 10 (12%) patients 1 year after CABG, which was caused by venous bypass graft thrombotic occlusion in 7 (70%) cases, and hemodynamically significant bypass graft stenosis in 3 (30%) cases. The following adverse cardiovascular events were registered in these patients: cardiovascular death — 2 patients; recurrent angina — 8 (80%) patients; acute myocardial infarction — 4 (40%) patients; hospitalization due to decompensated heart failure — 2 (20%) patients; repeated myocardial revascularization — 8 (80%) patients; life-threatening arrhythmias (ventricular tachycardia) — 3 (30%) patients. These patients had significantly higher levels of hs-C-reactive protein (hs-CRP), fractalkine, IL-1β, neopterin at all testing time points (before surgery, 24 hours and 7 days after CABG), indicating a more pronounced activation of inflammatory mechanisms.

Conclusion. The study confirmed the leading role of inflammation in triggering and maintaining the main mechanisms determining coronary conduit damage after CABG, which is the basis for bypass graft dysfunction. This allows us to consider inflammation as an independent cause of vascular damage, and the established significant inflammatory biomarkers (hs-CRP, fractalkine, IL-1β, neopterin) as predictors of bypass graft dysfunction and infavorable outcomes of myocardial revascularization.

About the Authors

Yu. I. Buziashvili
Bakulev National Medical Research Center for Cardiovascular Surgery
Russian Federation

Moscow



I. V. Koksheneva
Bakulev National Medical Research Center for Cardiovascular Surgery
Russian Federation

Moscow



D. Kh. Kamardinov
Bakulev National Medical Research Center for Cardiovascular Surgery
Russian Federation

Moscow



E. F. Tugeeva
Bakulev National Medical Research Center for Cardiovascular Surgery
Russian Federation

Moscow



I. P. Shuvaev
Bakulev National Medical Research Center for Cardiovascular Surgery
Russian Federation

Moscow



A. Sh. Iraskhanov
Bakulev National Medical Research Center for Cardiovascular Surgery
Russian Federation

Moscow



E. P. Golubev
Bakulev National Medical Research Center for Cardiovascular Surgery
Russian Federation

Moscow



R. M. Ibragimov
Bakulev National Medical Research Center for Cardiovascular Surgery
Russian Federation

Moscow



V. Yu. Buziashvili
Bakulev National Medical Research Center for Cardiovascular Surgery
Russian Federation

Moscow



O. M. Sherstyannikova
Bakulev National Medical Research Center for Cardiovascular Surgery
Russian Federation

Moscow



References

1. Bokeria LA, Avaliani VM, Butorin SP. Venous grafts and their viability in the immediate and late periods after coronary artery bypass grafting. Bulletin of the Bakulev Scientific Center of Cardiovascular Surgery, Russian Academy of Medical Sciences. Cardiovascular diseases. 2013;14(5):38-48. (In Russ.)

2. De Vries MR, Simons KH, Jukema JW, et al. Vein graft failure: from pathophysiology to clinical outcomes. Nature Reviews Cardiology. 2016;13(8):451-70. doi:10.1038/nrcardio.2016.76.

3. Kubova MCh, Bulaeva NI, Ruzina EV, Golukhova EZ. Risk factors for the development of bypass graft thrombosis in patients with coronary artery disease in the late stages after coronary artery bypass grafting. Creative cardiology. 2021;15(2):180. (In Russ.) doi:10.24022/1997-3187-2021-15-2-180-193.

4. Baganha F, de Jong A, Jukema JW, et al. The role of immunomodulation in vein graft remodeling and failure. Journal of Cardiovascular Translational Research. 2021;14:100-9. doi:10.1007/s12265-020-10001-y.

5. Kosmidou I, Redfors B, Chen S, et al. C-reactive protein and prognosis after percutaneous coronary intervention and bypass graft surgery for left main coronary artery disease: analysis from the EXCEL trial. American heart journal. 2019;210:49-57. doi:10.1016/j.ahj.2018.12.013.

6. Shvarts VA, Talibova SM, Sokolskaya MA, et al. Association of new biomarkers of systemic inflammation with the development of atherosclerosis and its severity. Russian Journal of Cardiology. 2024;29(8):6025. (In Russ.) doi:10.15829/1560-4071-2024-6025.

7. Urbanowicz T, Olasińska-Wiśniewska A, Gładki M, Jemielity M.The Significance of Simple Inflammatory Markers in Off Pump Surgery-Review, Rev. Cardiovasc. Med, 2022;23(12):400. doi:10.31083/j.rcm2312400.

8. Katkenov N, Mukhatayev Z, Kozhakhmetov S, et al. Systematic Review on the Role of IL-6 and IL-1beta in Cardiovascular Diseases. Cardiovasc. Dev. Dis. 2024;11(7):206. doi:10.3390/jcdd11070206.

9. Bonaventura A, Moroni F, Golino M, et al. IL-1 blockade in cardiovascular disease: an appraisal of the evidence across different inflammatory paradigms. Cardiol Angiol. 2024;72(5):477-88. doi:10.23736/S2724-5683.23.06390-1.

10. Potere N, Bonaventura A, Abbate A. Novel Therapeutics and Upcoming Clinical Trials Targeting Inflammation in Cardiovascular Diseases. Arterioscler. Thromb. Vasc. Biol. 2024;44(12):2371-95. doi:10.1161/ATVBAHA.124.319980.

11. Attiq A, Afzal S, Ahmad W, Kandeel M. Hegemony of inflammation in atherosclerosis and coronary artery disease. Eur. J.Pharmacol. 2024;5(966):176338. doi:10.1016/j.ejphar.2024.176338.

12. Bokeria LA, Pursanov MG, Petrosyan KV, et al. Intraoperative bypass angiography: an optimal method for assessing the patency of coronary bypass grafts and further improving the results of surgical myocardial revascularization. Thoracic and Cardiovascular Surgery. 2018;60(3):233-41. (In Russ.) doi:10.24022/0236-2791-2018-60-3233-241.

13. Sigaev IYu, Keren MA, Shonia ZD. Capabilities of ultrasound flowmetry in combination with epicardial ultrasound scanning for a comprehensive assessment of the functional state of conduits in coronary artery bypass grafting operations. Thoracic and cardiovascular surgery. 2021;63(2):133-9. (In Russ.) doi:10.24022/0236-2791-2021-63-2-133-139.

14. Xenogiannis I, Zenati M, Bhatt DL, et al. Saphenous vein graft failure: from pathophysiology to prevention and treatment strategies. Circulation. 2021;144(9):728-45. doi:10.1161/CIRCULATIONAHA.120.052163.

15. Kršek A, Batičic L, urko-Cofek BC, et al. Insights into the Molecular Mechanism of Endothelial Glycocalyx Dysfunction during Heart Surgery. Curr. Issues Mol. Biol. 2024;46: 3794-809. doi:10.3390/cimb46050236.

16. Guida GA, Angelini GD. Pathophysiology and mechanisms of saphenous vein graft failure. Brazilian journal of cardiovascular surgery. 2022;37(spe1):32-7. doi:10.21470/1678-9741-2022-0133.

17. Wadey K, Lopes J, Bendeck M, George S.Role of smooth muscle cells in coronary artery bypass grafting failure. Cardiovascular research. 2018;114(4):601-10. doi:10.1093/cvr/cvy021.

18. Irakhanov ASh, Buziashvili YuI, Koksheneva IV, et al. The importance of inflammatory response mediators in the mechanisms of atherogenesis and their effect on the results of myocardial revascularization in patients with coronary heart disease. Creative cardiology. 2023;17(3):330-40. (In Russ.) doi:10.24022/1997-3187-2023-17-3-330-340.

19. Aydın C, Engin M. The value of inflammation indexes in predicting patency of saphenous vein grafts in patients with coronary artery bypass graft surgery. Cureus. 2021;13(7). doi:10.7759%2Fcureus.16646.

20. Bazan JF, Bacon KB, Hardiman G, et al. A new class of membrane-bound chemokine with a CX3C motif. Nature. 1997;385(6617):640-4. doi:10.1038/385640a0.

21. Loh SX, Ekinci Y, Spray L, et al. Fractalkine signalling (CX3CL1/CX3CR1 axis) as an emerging target in coronary artery disease. Journal of Clinical Medicine, 2023;12(14): 4821. doi:10.3390/jcm12144821.

22. Szukiewicz D. CX3CL1 (Fractalkine)-CX3CR1 Axis in Inflammation-Induced Angiogenesis and Tumorigenesis. International journal of molecular sciences. 2024;25(9):4679. doi:10.3390/ijms25094679.

23. Zhuang Q, Ou J, Zhang S, Ming Y. Crosstalk between the CX3CL1/CX3CR1 axis and inflammatory signaling pathways in tissue injury. Current Protein and Peptide Science. 2019;20(8):844-54. doi:10.2174/1389203720666190305165722.

24. Flierl U, Bauersachs J, Schäfer A. Modulation of platelet and monocyte function by the chemokine fractalkine (CX3CL1) in cardiovascular disease. European Journal of Clinical Investigation. 2015;45(6):624-33. doi:10.1111/eci.12443.

25. Stangret A, Sadowski KA, Jabłoński K, et al. Chemokine Fractalkine and Non-Obstructive Coronary Artery Disease — Is There a Link? International Journal of Molecular Sciences. 2024;25(7):3885. doi:10.3390/ijms25073885.

26. Boag SE, Das R, Shmeleva EV, et al. T lymphocytes and fractalkine contribute to myocardial ischemia/reperfusion injury in patients. The Journal of clinical investigation. 2015;125(8):3063-76. doi:10.1172/JCI80055.

27. Li J, Guo Y, Luan X, et al. Independent roles of monocyte chemoattractant protein-1, regulated on activation, normal T-cell expressed and secreted and fractalkine in the vulnerability of coronary atherosclerotic plaques. Circulation Journal. 2012;76(9): 2167-73. doi:10.1253/circj.cj-11-1457.

28. Yao K, Zhang S, Lu H, et al. Changes in fractalkine in patients with ST-elevation myocardial infarction. Coronary Artery Disease. 2015;26(6):516-20. doi:10.1097/MCA.00000000000000273.

29. Mai W, Liao Y. Targeting IL-1β in the Treatment of Atherosclerosis. Frontiers in immunology. 2020;11:589654. doi:10.3389/fimmu.2020.589654.

30. Catană MG, Popențiu IA, Văleanu M, et al. IL-1 Beta — A Biomarker for Ischemic Stroke Prognosis and Atherosclerotic Lesions of the Internal Carotid Artery. Medicina. 2023; 59(10):1790. doi:10.3390/medicina59101790.

31. Olofsson Peder S, Yuri S, Ken J, et al. A functional interleukin-1 receptor antagonist polymorphism influences atherosclerosis development — the interleukin-1β: interleukin-1 receptor antagonist balance in atherosclerosis. Circulation Journal. 2009;73(8): 1531-6. doi:10.1253/circj.cj-08-1150.

32. Kidder E, Pea M, Cheng S, et al. The interleukin-1 receptor type-1 in disturbed flowinduced endothelial mesenchymal activation. Frontiers in Cardiovascular Medicine. 2023;10:1190460. doi:10.3389/fcvm.2023.1190460.

33. Libby P. Interleukin-1 beta as a target for atherosclerosis therapy: biological basis of CANTOS and beyond. Journal of the American College of Cardiology. 2017;70(18): 2278-89. doi:10.1016/j.jacc.2017.09.028.

34. Mohammadnia N, Opstal TSJ, El Messaoudi S, et al. An Update on Inflammation in Atherosclerosis: How to Effectively Treat Residual Risk. Clin. Ther. 2023;45(11):1055-9. doi:10.1016/j.clinthera.2023.08.016.

35. Gusev E, Sarapultsev A. Atherosclerosis and Inflammation: Insights from the Theory of General Pathological Processes. Int. J.Mol. Sci. 2023;24:7910. doi:10.3390/ijms24097910.

36. Kotlyarov S.Immune Function of Endothelial Cells: Evolutionary Aspects, Molecular Biology and Role in Atherogenesis. Int. J.Mol. Sci. 2022;23(17):9770. doi:10.3390/ijms23179770.

37. Wan RH, Yuan Y, Hao W, et al. Relationship between serum neopterin level and peripheral arterial plaque in patients with type 2 diabetes. Diabetes, Metabolic Syndrome and Obesity. 2021;2871-8. doi:10.2147/DMSO.S315986.

38. Ünüvar S, Tanrıverdi Z, Aslanhan H. Potential prognostic role of immune system activation marker neopterin in patients with type 2 diabetes. Journal of Medical Biochemistry. 2018;37(4):465. doi:10.2478%2Fjomb-2018-0004.

39. De Rosa S, Cirillo P, Pacileo M, et al. Neopterin: from forgotten biomarker to leading actor in cardiovascular pathophysiology. Current vascular pharmacology. 2011;9(2):188-99. doi:10.2174/157016111794519372.

40. Fuchs D, Avanzas P, Arroyo-Espliguero R, et al. The role of neopterin in atherogenesis and cardiovascular risk assessment. Current medicinal chemistry. 2009;16(35):4644-53. doi:10.2174/092986709789878247.

41. Bjørnestad EØ, Borsholm RA, Svingen GF, et al. Neopterin as an effect modifier of the cardiovascular risk predicted by Total homocysteine: A prospective 2‐cohort study. Journal of the American heart association. 2017;6(11):e006500. doi:10.1161/JAHA.117.006500.

42. Kember I, Sanajou S, Kilicarslan B, et al. Evaluation of neopterin levels and kynurenine pathway in patients with acute coronary syndrome. Acute and Critical Care. 2023;38(3):325. doi:10.4266%2Facc.2023.00024.

43. Nazer B, Ray KK, Sloan S, et al. Prognostic utility of neopterin and risk of heart failure hospitalization after an acute coronary syndrome. European heart journal. 2011;32(11):1390-7. doi:10.1093/eurheartj/ehr032.

44. Zouridakis E, Avanzas P, Arroyo-Espliguero R, et al. Markers of inflammation and rapid coronary artery disease progression in patients with stable angina pectoris. Circulation. 2004;110(13):1747-53. doi:10.1161/01.CIR.0000142664.18739.92.

45. Vengen IT, Dale AC, Wiseth R, et al. Neopterin predicts the risk for fatal ischemic heart disease in type 2 diabetes mellitus: long-term follow-up of the HUNT 1 study. Atherosclerosis. 2009;207(1):239-44. doi:10.1016/j.atherosclerosis.2009.04.003.


Supplementary files

  • Inflammation plays a leading role in triggering and maintaining the main mechanisms determining coronary conduit damage after coronary artery bypass grafting (CABG), which is the basis for graft dysfunction.
  • Analysis of changes in inflammatory response hu­moral markers after surgery showed that patients with bypass dysfunction (D+) had significantly higher levels of C-reactive protein, fractalkine, IL-1β, neopterin at all testing time points (before surgery, 24 hours and 7 days after CABG).
  • In the future, therapeutic approaches aimed at CX3CL1/CX3CR1/ IL-1β/neopterin block may become a new strategy for the prevention and treat­ment of adverse cardiovascular events in patients with coronary artery disease, including after CABG.

Review

For citations:


Buziashvili Yu.I., Koksheneva I.V., Kamardinov D.Kh., Tugeeva E.F., Shuvaev I.P., Iraskhanov A.Sh., Golubev E.P., Ibragimov R.M., Buziashvili V.Yu., Sherstyannikova O.M. Impact of systemic inflammatory response activation on the risk of coronary conduit dysfunction and the incidence of cardiovascular events after coronary artery bypass grafting. Russian Journal of Cardiology. 2025;30(4):6112. (In Russ.) https://doi.org/10.15829/15604071-2025-6112. EDN: VPJVMG

Views: 122


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1560-4071 (Print)
ISSN 2618-7620 (Online)