Quantitative computed tomography coronary angiography in patients with acute myocardial infarction: association with cardiac biomarkers
https://doi.org/10.15829/1560-4071-2024-6101
EDN: DAMFTZ
Abstract
Aim. To study quantitative parameters of coronary atherosclerosis, according to computed tomography coronary angiography (CTCA), and to identify their association with the level of cardiac biomarkers in patients with acute myocardial infarction (MI).
Material and methods. The study included patients with newly diagnosed MI. Depending on the coronary artery (CA) stenosis, two groups were formed: 1) MI with obstructive CA ≥50% (MICAD); 2) MI with non-obstructive CA <50% (MINOCA). All patients were assessed for cardiac biomarkers and underwent CTCA.
Results. The study included 31 patients as follows: MINOCA group consisted of 10 patients (5 men aged 68 (57; 79) years); MICAD group — 21 patients (13 men aged 62 (56; 68) years). When analyzing cardiac biomarker levels, a significant increase in cardiac troponin I (cTnI) levels was noted on the 4th (p=0,04) and on the 7th day (p=0,0009) in MICAD patients. A significant predominance of the volume (p=0,01) and burden (p=0,004) of low-density plaques was revealed in the MICAD group compared to MINOCA. In addition, MICAD patients had significantly increased values of the total atherosclerotic burden (p=0,01) and the total burden of the soft tissue component of plaques (p=0,04). A significant correlation was found between the plaque volume with cTnI on day 7 (ρ=0,52, p<0,05) and the plaque burden with cTnI on day 7 (ρ=0,43, p<0,05).
Conclusion. According to CTCA, the soft tissue component of plaques is associated with coronary atherosclerosis severity and myocardial damage in patients with MI. Soft tissue burden is a predictor of more severe myocardial damage, according to the cardiac biomarker data.
About the Authors
A. S. DasheevaRussian Federation
Ayana S. Dasheyeva.
Tomsk
Competing Interests:
None
D. A. Vorobyeva
Russian Federation
Darya A. Vorobyova.
Tomsk
Competing Interests:
None
T. E. Suslova
Russian Federation
Tatyana E. Suslova.
Tomsk
Competing Interests:
None
A. N. Maltseva
Russian Federation
Alina N. Maltseva.
Tomsk
Competing Interests:
None
A. V. Mochula
Russian Federation
Andrew V. Mochula.
Tomsk
Competing Interests:
None
V. V. Ryabov
Russian Federation
Vyacheslav V. Ryabov.
Tomsk
Competing Interests:
None
O. V. Mochula
Russian Federation
Olga V. Mochula.
Tomsk
Competing Interests:
None
K. V. Zavadovsky
Russian Federation
Konstantin V. Zavadovsky.
Tomsk
Competing Interests:
None
References
1. Vaduganathan M, Mensah GA, Turco JV, et al. The Global Burden of Cardiovascular Diseases and Risk: A Compass for Future Health. J Am Coll Cardiol. 2022;80(25):2361-71. doi:10.1016/j.jacc.2022.11.005.
2. Boytsov SA, Provatorov SI. Possibilities of dispensary observation in reducing mortality from coronary heart disease. Terapevticheskii arkhiv. 2023;95(1):5-10. (In Russ.) doi:10.26442/00403660.2023.01.202038.
3. Russian Society of Cardiology (RSC) 2020 Clinical practice guidelines for Stable coronary artery disease. Russian Journal of Cardiology. 2020;25(11):4076. (In Russ.) doi:10.15829/1560-4071-2020-4076.
4. Williams M, Earls J, Hecht H. Quantitative assessment of atherosclerotic plaque, recent progress and current limitations. J Cardiovasc Comput Tomogr. 2022;16(2):124-37. doi:10.1016/j.jcct.2021.07.001.
5. Knuuti J, Ballo H, Juarez-Orozco LE, et al. The performance of non-invasive tests to rule-in and rule-out significant coronary artery stenosis in patients with stable angina: a meta-analysis focused on post-test disease probability. Eur Heart J. 2018;39(35):3322-30. doi:10.1093/eurheartj/ehy267.
6. Khan H, Bansal K, Griffin WF, et al. Assessment of atherosclerotic plaque burden: comparison of AI-QCT versus SIS, CAC, visual and CAD-RADS stenosis categories. Int J Cardiovasc Imaging. 2024;40(6):1201-9. doi:10.1007/s10554-024-03087-x.
7. Nurmohamed NS, Bom MJ, Jukema RA, et al. AI-Guided Quantitative Plaque Staging Predicts Long-Term Cardiovascular Outcomes in Patients at Risk for Atherosclerotic CVD. JACC Cardiovasc Imaging. 2024;17(3):269-80. doi:10.1016/j.jcmg.2023.05.020.
8. Li Y, Pei H, Bulluck H, et al. Periprocedural elevated myocardial biomarkers and clinical outcomes following elective percutaneous coronary intervention: a comprehensive dose-response meta-analysis of 44,972 patients from 24 prospective studies. EuroIntervention. 2020;15(16):1444-50. doi:10.4244/EIJ-D-19-00737.
9. Fourth universal definition of myocardial infarction (2018). Russian Journal of Cardiology. 2019;(3):107-38. (In Russ.) Четвертое универсальное определение инфаркта миокарда (2018). Российский кардиологический журнал. 2019;(3):107-38. doi:10.15829/1560-4071-2019-3-107-138.
10. Coccolini F, Stahel PF, Montori G, et al. Pelvic trauma: WSES classification and guidelines. World J Emerg Surg. 2017;12(5). doi:10.1186/s13017-017-0117-6.
11. Shaw LJ, Blankstein R, Bax JJ, et al. Society of Cardiovascular Computed Tomography/ North American Society of Cardiovascular Imaging — Expert Consensus Document on Coronary CT Imaging of Atherosclerotic Plaque. J Cardiovasc Comput Tomogr. 2021;15(2):93-109. doi:10.1016/j.jcct.2020.11.002.
12. Meah MN, Tzolos E, Wang KL, et al. Plaque Burden and 1-Year Outcomes in Acute Chest Pain: Results From the Multicenter RAPID-CTCA Trial. JACC Cardiovasc Imaging. 2022;15(11):1916-25. doi:10.1016/j.jcmg.2022.04.024.
13. Williams M, Kwiecinski J, Doris M, et al. Low-Attenuation Noncalcified Plaque on Coronary Computed Tomography Angiography Predicts Myocardial Infarction: Results From the Multicenter SCOT-HEART Trial (Scottish Computed Tomography of the HEART). Circulation. 2020;141(18):1452-62. doi:10.1161/CIRCULATIONAHA.119.044720.
14. Semenova AA, Merkulova IN, Shariya MA, et al. Structural features of atherosclerotic plaques and their dynamics assessed by CT angiography in patients with acute coronary syndrome: a prospective study. Russian Cardiology Bulletin. 2021;16(4):66-75. (In Russ.) doi:10.17116/Cardiobulletin20211604166.
15. Ferencik M, Mayrhofer T, Bittner D, et al. Use of High-Risk Coronary Atherosclerotic Plaque Detection for Risk Stratification of Patients With Stable Chest Pain: A Secondary Analysis of the PROMISE Randomized Clinical Trial. JAMA Cardiol. 2018;3(2):144-52. doi:10.1001/jamacardio.2017.4973.
16. Meah M, Wereski R, Bularga A, et al. Coronary low-attenuation plaque and high-sensitivity cardiac troponin. Heart. 2023;109(9):702-9. doi:10.1136/heartjnl-2022-321867.
17. Zavadovsky KV, Vorobyeva DA, Mochula OV, et al. Myocardial Blood Flow and Flow Reserve in Patients With Acute Myocardial Infarction and Obstructive and Non-Obstructive Coronary Arteries: CZT SPECT Study. Front. Nucl. Med. 2022;2:935539. doi:10.3389/fnume.2022.935539.
18. Mochula AV, Mochula OV, Maltseva AN, et al. Quantitative assessment of myocardial blood flow by dynamic single photon emission computed tomography: relationship with ECG changes and biochemical markers of damage in patients with acute myocardial infarction. Siberian Journal of Clinical and Experimental Medicine. 2023;38(3):66-74. (In Russ.) doi:10.29001/2073-8552-2023-39-3-66-74.
Supplementary files
- Quantitative analysis of coronary atherosclerosis according to computed tomography coronary angiography allows identifying the calcified and soft tissue atherosclerotic components.
- An association was found between the soft tissue component of atherosclerotic plaque and the severity of coronary atherosclerosis and myocardial damage in patients with acute myocardial infarction.
- Soft tissue burden predicts greater myocardial damage as measured by cardiac biomarkers.
Review
For citations:
Dasheeva A.S., Vorobyeva D.A., Suslova T.E., Maltseva A.N., Mochula A.V., Ryabov V.V., Mochula O.V., Zavadovsky K.V. Quantitative computed tomography coronary angiography in patients with acute myocardial infarction: association with cardiac biomarkers. Russian Journal of Cardiology. 2024;29(12):6101. (In Russ.) https://doi.org/10.15829/1560-4071-2024-6101. EDN: DAMFTZ