Preview

Russian Journal of Cardiology

Advanced search

Prediction of atrial fibrillation in patients with coronary artery disease using mathematical modeling methods

https://doi.org/10.15829/1560-4071-2025-5868

EDN: KTACGP

Abstract

Aim. To create a method for assessing the probability of atrial fibrillation (AF) in patients with coronary artery disease (CAD).

Material and methods. Our open­label, continuous, retrospective, non­randomized study included data from female and male patients (n=181) with a diagnosis of CAD who were treated at the City Clinical Hospital № 1 (cardiology department) in Novosibirsk for CAD from September 2022 to September 2023. Based on the data obtained, models for predicting the probability of AF detection were developed.

Results. Prognostic models of AF risk in patients with CAD were constructed. The model with explanatory variables (left ventricular ejection fraction, hypertension, high­density lipoprotein level, GG variant of the interleukin­6 gene) showed a sensitivity of 84% and a specificity of 92% in a leave­one­out cross validation.

Conclusion. The constructed prognostic method for assessing the risk of AF in patients with CAD has good prognostic value and is quite easy to use, including for practical healthcare physicians.

About the Authors

S. V. Kuzin
Federal Research Center for Fundamental and Translational Medicine
Russian Federation

Novosibirsk



N. G. Lozhkina
Federal Research Center for Fundamental and Translational Medicine
Russian Federation

Novosibirsk



E. I. Shefer
Sobolev Institute of Mathematics
Russian Federation

Novosibirsk



P. S. R.
Sobolev Institute of Mathematics
Russian Federation

Novosibirsk



References

1. Roth GA, Mensah GA, Johnson CO, et al. GBD-NHLBI-JACC Global Burden of Cardiovascular Diseases Writing Group. Global Burden of Cardiovascular Diseases and Risk Factors, 1990-2019: Update From the GBD 2019 Study. J Am Coll Cardiol. 2020;76: 2982-3021. doi:10.1016/j.jacc.2020.11.010.

2. Weng LC, Preis SR, Hulme OL, et al. Genetic Predisposition, Clinical Risk Factor Burden, and Lifetime Risk of Atrial Fibrillation. Circulation. 2018;137:1027-38. doi:10.1161/ CIRCULATIONAHA.117.031431.

3. Feng L, Yi W. Coronary heart disease and atrial fibrillation: a vicious cycle. American Journal of Physiology-Heart and Circulatory Physiology. 2021;320(1):H1-H12. doi:10.1152/ajpheart.00702.2020.

4. Yaroslavskaya EI, Kuznetsov VA, Gorbatenko EA, et al. Association of Atrial Fibrillation with Coronary Lesion in Ischemic Heart Disease Patients. Kardiologiia. 2019;59(9):5-12. (In Russ.) Ярославская Е. И., Кузнецов В. А., Горбатенко Е. А. и др. Связь фибрилляции предсердий с поражением коронарного русла у больных ишемической болезнью сердца. Кардиология. 2019;59(9):5-12. doi:10.18087/cardio.2019.9.2641.

5. Linz D, Gawalko M, Betz K, et al. Atrial fibrillation: epidemiology, screening and digital health. Lancet Reg Health Eur. 2024;37:100786. doi:10.1016/j.lanepe.2023.100786.

6. Mareev YuV, Polyakov DS, Vinogradova NG, et al. Epidemiology of atrial fibrillation in a representative sample of the European part of the Russian Federation. Analysis of EPOCH-CHF study. Kardiologiia. 2022;62(4):12-9. (In Russ.) doi:10.18087/cardio.2022.4.n1997.

7. Kobalava ZD, Lazarev PV. Risk of Coronary Events in Atrial Fibrillation. Kardiologiia. 2020;60(1):43-52. (In Russ.) doi:10.18087/cardio.2020.1.n828.

8. Kirtbaya LN. Epidemiology and mechanism of atrial fibrillation development after coronary interventions. Annals of arrhythmology. 2021;18(4):247-53. (In Russ.) doi:10.15275/ annaritmol.2021.4.7.

9. Savelyeva EA, Sokolova NYu, Anokhin AV, et al. Intraoperative risk factors for atrial fibrillation occurring for the first time in patients with chronic coronary artery disease. Bulletin of the A. N. Bakulev National Research Center of the Russian Academy of Medical Sciences. Cardiovascular diseases. 2023;24(S6):52. (In Russ.) doi:10.24022/1810-0694. EDN UOBVDY.

10. Petrakova ES, Savina NM, Molochkov AV. Atrial fibrillation after coronary artery bypass surgery: risk factors, prevention and treatment. Kardiologiia. 2020;60(9):134-48. (In Russ.) doi:10.18087/cardio.2020.9.n1074. EDN VQVACV.

11. Tulegenova ZhSh, Zholdin BK, Kudaiberdieva GZ, Abdrakhmanov AS. Risk factors for atrial fibrillation in patients with arterial hypertension with preserved systolic function of the left ventricle. Kardiologiia. 2019;59(S5):37-46. (In Russ.) doi:10.18087/cardio.2617. EDN RLTEMJ.

12. Oikonomou E, Zografos T, Papamikroulis GA, et al. Biomarkers in Atrial Fibrillation and Heart Failure. Curr Med Chem. 2019;26(5):873-87. doi:10.2174/092986732466617083 0100424.

13. Tai M, Shi H, Wang H, et al. Pilot study of peripheral blood chemokines as biomarkers for atrial fibrillation-related thromboembolism and bleeding in elderly patients. Front Public Health. 2022;10:844087. doi:10.3389/fpubh.2022.844087.

14. Scott LJr, Li N. Role of Inflammatory Signaling in Atrial Fibrillation. Int J Cardiol. 2019;287:195-200. doi:10.1016/j.ijcard.2018.10.020.

15. Virani SS, Newby KL, Arnold SV, et al. 2023 AHA/ACC/ACCP/ASPC/NLA/PCNA Guideline for the Management of Patients With Chronic Coronary Disease: A Report of the American Heart Association/American College of Cardiology Joint Committee on Clinical Practice Guidelines, Journal of the American College of Cardiology. 2023;82(9). doi:10.1016/j.jacc.2023.04.003.

16. Vrints C, Andreotti F, Koskinas KC, et al. 2024 ESC Guidelines for the management of chronic coronary syndromes: Developed by the task force for the management of chronic coronary syndromes of the European Society of Cardiology (ESC). European Journal of Cardiology. 2024;45(36):3415-537. doi:10.1093/eurheartj/ehae177.

17. Yildiz M, Lavie CJ, Morin DP, Oktay AA. The complex interplay between diabetes mellitus and atrial fibrillation. Expert Rev Cardiovasc Ther. 2022;20(9):707-17. doi:10.1080/14779072.2022.2115357.

18. Anter E, Jessup M, Callans DJ. Atrial Fibrillation and Heart Failure: Treatment Considerations for a Dual Epidemic. Circulation. 2009;119(18). doi:10.1161/CIRCULATIONAHA.108.821306.

19. Pirillo A, Norata GD. The burden of hypercholesterolemia and ischemic heart disease in an ageing world. Pharmacol Res. 2023;193:106814. doi:10.1016/j.phrs.2023.106814.

20. Watanabe H, Tanabe N, Yagihara N, et al. Association between lipid profile and risk of atrial fibrillation. Circ J. 2011;75(12):2767-74. doi:10.1253/circj.cj-11-0780.

21. Hendriksen JM, Geersing GJ, Moons KG, de Groot JA. Diagnostic and prognostic prediction models. J Thromb Haemost. 2013;11 Suppl 1:129-41. doi:10.1111/jth.12262.


Supplementary files

Review

For citations:


Kuzin S.V., Lozhkina N.G., Shefer E.I., R. P.S. Prediction of atrial fibrillation in patients with coronary artery disease using mathematical modeling methods. Russian Journal of Cardiology. 2025;30(5):5868. (In Russ.) https://doi.org/10.15829/1560-4071-2025-5868. EDN: KTACGP

Views: 40


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1560-4071 (Print)
ISSN 2618-7620 (Online)