Contribution of lipophilicity to the clinical effects of drugs
https://doi.org/10.15829/1560-4071-2024-5829
EDN: GJICGY
Abstract
The article is devoted to a detailed analysis of the action of various drugs used in the treatment of hypertension and atherogenic dyslipidemia, depending on their ability to dissolve in fatty media (lipophilicity). The authors analyze connection between the lipophilicity level of drugs and their pharmacokinetics, drug-drug interactions, the manifestations of clinical effects and organ protection, as well as their ability to influence the prognosis of comorbid patients. Using angiotensin-converting enzyme inhibitors, calcium channel blockers, and statins as examples, the authors explain the practical significance of pharmacological parameters such as plasma protein binding and distribution volume, and also develop an understanding of the importance of its routine use in order to obtain clinical benefits for patients.
About the Authors
A. S. SkotnikovRussian Federation
Moscow
Competing Interests:
none
M. V. Melnik
Russian Federation
Moscow
Competing Interests:
none
E. A. Zinina
Russian Federation
Moscow
Competing Interests:
none
I. V. Sivertseva
Russian Federation
Moscow
Competing Interests:
none
References
1. Waring MJ. Lipophilicity in drug discovery. Expert Opin Drug Discov. 2010;5(3):235-48. doi:10.1517/17460441003605098.
2. Lewis DF, Dickins M. Baseline lipophilicity relationships in human cytochromes P450 associated with drug metabolism. Drug Metab Rev. 2003;35(1):1-18. doi:10.1081/dmr-120018245.
3. Arnott JA, Planey SL. The influence of lipophilicity in drug discovery and design. Expert Opin Drug Discov. 2012;7(10):863-75. doi:10.1517/17460441.2012.714363.
4. Testa B, Crivori, P, Reist M, et al. The influence of lipophilicity on the pharmacokinetic behavior of drugs: Concepts and examples. Perspectives in Drug Discovery and Design. 2000;19:179-211. doi:10.1023/A:1008741731244.
5. Zaro JL. Lipid-based drug carriers for prodrugs to enhance drug delivery. AAPS J. 2015;17(1):83-92. doi:10.1208/s12248-014-9670-z.
6. Brugts JJ, Ferrari R, Simoons ML. Angiotensin-converting enzyme inhibition by perindopril in the treatment of cardiovascular disease. Expert Rev Cardiovasc Ther. 2009;7(4): 345-60. doi:10.1586/erc.09.2.
7. Irby D, Du C, Li F. Lipid-Drug Conjugate for Enhancing Drug Delivery. Mol Pharm. 2017;14(5):1325-38. doi:10.1021/acs.molpharmaceut.6b01027.
8. Jacob M, Chappell D, Rehm M. "The 'third space'—fact or fiction?" Best Pract Res Clin Anaesthesiol. 2009;23(2):145-57. doi:10.1016/j.bpa.2009.05.001.
9. Rhoades RA, Bell DR. Medical Physiology: Principles for Clinical Medicine. Lippincott Williams & Wilkins. 2012, pp. 5-6. ISBN: 978-1-60913-427-3.
10. Tsopelas F, Giaginis C, Tsantili-Kakoulidou A. Lipophilicity and biomimetic properties to support drug discovery. Expert Opin Drug Discov. 2017;12(9):885-96. doi:10.1080/17460441.2017.1344210.
11. Zhu Q, Li X, Xia D, et al. Lipid-Based Formulations for Oral Drug Delivery: Effects on Drug Absorption and Metabolism. Curr Drug Metab. 2015;16(3):200-10. doi:10.2174/138920021603150812121453.
12. Ginex T, Vazquez J, Gilbert E, et al. Lipophilicity in drug design: an overview of lipophilicity descriptors in 3D-QSAR studies. Future Med Chem. 2019;11(10):1177-93. doi:10.4155/fmc-2018-0435.
13. Xiong G, Wu Z, Yi J, et al. ADMETlab 2.0: an integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Res. 2021;49(W1):W5-W14. doi:10.1093/nar/gkab255.
14. Bruno CD, Harmatz JS, Duan SX, et al. Effect of lipophilicity on drug distribution and elimination: Influence of obesity. Br J Clin Pharmacol. 2021;87(8):3197-205. doi:10.1111/bcp.14735.
15. Ruschitzka FT, Lüscher TF. Is there a rationale for combining angiotensin-converting enzyme inhibitors and calcium antagonists in cardiovascular disease? Am Heart J. 1997;134(2 Pt 2):S31-47. doi:10.1016/s0002-8703(97)70007-3.
16. Phillips JE, Preston Mason R. Inhibition of oxidized LDL aggregation with the calcium channel blocker amlodipine: role of electrostatic interactions. Atherosclerosis. 2003;168(2):239-44. doi:10.1016/s0021-9150(03)00102-3.
17. Mason RP, Walter MF, Trumbore MW, et al. Membrane antioxidant effects of the charged dihydropyridine calcium antagonist amlodipine. J Mol Cell Cardiol. 1999;31(1):275-81. doi:10.1006/jmcc.1998.0867.
18. Mason RP, Campbell SF, Wang SD, Herbette LG. Comparison of location and binding for the positively charged 1,4-dihydropyridine calcium channel antagonist amlodipine with uncharged drugs of this class in cardiac membranes. Mol Pharmacol. 1989;36(4):634-40.
19. Murdoch D, Heel RC. Amlodipine. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic use in cardiovascular disease. Drugs. 1991;41(3):478-505. doi:10.2165/00003495-199141030-00009.
20. Kukes VG, Sychev DA, Shikh EV, et al. "Clinical pharmacology", Moscow: Geotar-Media, 2022, p. 1024. (In Russ.) ISBN: 597046807X.
21. Bytyçi I, Bajraktari G, Bhatt DL, et al. Lipid and Blood Pressure Meta-analysis Collaboration (LBPMC) Group. Hydrophilic vs lipophilic statins in coronary artery disease: A meta-analysis of randomized controlled trials. J Clin Lipidol. 2017;11(3):624-37. doi:10.1016/j.jacl.2017.03.003.
22. Liu G, Zheng XX, Xu YL, et al. Effects of lipophilic statins for heart failure: a meta-analysis of 13 randomised controlled trials. Heart Lung Circ. 2014;23(10):970-7. doi:10.1016/j.hlc.2014.05.005.
23. Banach M, Rizzo M, Toth PP, et al. Statin intolerance — an attempt at a unified definition. Position paper from an International Lipid Expert Panel. Arch Med Sci. 2015;11:1-23. doi:10.5114/aoms.2015.49807.
24. Jamal SM, Eisenberg MJ, Christopoulos S. Rhabdomyolysis associated with hydroxymethylglutaryl-coenzyme A reductase inhibitors. Am Heart J. 2004;147:956-65. doi:10.1016/j.ahj.2003.12.037.
25. Roberts WC. The underused miracle drugs: the statin drugs are to atherosclerosis what penicillin was to infectious disease. Am J Cardiol. 1996;78:377-8. doi:10.1016/s0002-9149(96)00441-9.
26. Veillard NR, Mach F. Statins: the new aspirin? Cell Mol Life Sci. 2002;59:1771-86. doi:10.1007/pl00012505.
27. Wiseman LR, McTavish D. Trandolapril. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic use in essential hypertension. Drugs. 1994;48(1): 71-90. doi:10.2165/00003495-199448010-00007.
28. Raevsky OA, Fetisov VI, Trepalina EP, et al. Quantitative estimation of drug absorption in humans for passively transported compounds on the basis of their physico-chemical parameters. Quant. Struct.-Act. Relat. 2000;19:366-74.
29. Sidorenko BA, Preobrazhensky DV. In the book: Angiotensin-converting enzyme inhibitors. Litterra, 2007; 351 р. (In Russ.) ISBN: 978-5-98216-097-3.
30. Wang XZ, Yu ZX, Nie B, Chen DM. Perindopril inhibits myocardial apoptosis in mice with acute myocardial infarction through TLR4/NF-κB pathway. Eur Rev Med Pharmacol Sci. 2019;23(15):6672-82. doi:10.26355/eurrev_201908_18558.
31. Baer JT, Sauer WH, Berlin JA, Kimmel SE. Comparison of angiotensin-converting enzyme inhibitors and angiotensin receptor blockers in the primary prevention of myocardial infarction in hypertensive patients. Am J Cardiol. 2004;94(4):479-81. doi:10.1016/j.amjcard.2004.04.063.
32. Pilote L, Abrahamowicz M, Rodrigues E, et al. Mortality rates in elderly patients who take different angiotensin-converting enzyme inhibitors after acute myocardial infarction: a class effect? Ann Intern Med. 2004;141(2):102-12. doi:10.7326/0003-4819-141-2-200407200-00008.
33. Tschudi MR, Noll G, Lüscher TP. Pharmakotherapie der Arteriosklerose und ihrer Komplikationen. Wirkung von ACE-Inhibitoren und HMG-CoA-Reduktase-Hemmern [Pharmacotherapy of arteriosclerosis and its complications. Effect of ACE inhibitors and HMG-CoA-reductase inhibitors]. Schweiz Med Wochenschr. 1997;127(15):636-49. German.
34. Cicero AFG, Fogacci F, Rizzoli E, et al.; Brisighella Heart Study Group. Impact of simultaneous management of hypertension and hypercholesterolemia with ACE inhibitors and statins on cardiovascular outcomes in the Brisighella Heart Study: A 8-year follow-up. Nutr Metab Cardiovasc Dis. 2022;32(9):2246-54. doi:10.1016/j.numecd.2022.06.017.
- Fat-soluble (lipophilic) medications are quickly absorbed, widely distributed in the body, and also have material and functional accumulation in tissues, providing longer-lasting and more pronounced organ protective effects than hydrophilic medications.
- An excessive lipophilicity of medications affects not only its positive properties, but also the severity of its undesirable effects and toxicity.
- Modern drugs with moderate lipophilicity and prescribed in average therapeutic doses are most effective in terms of long-term benefits and organ protective properties, while having an adequate safety profile.
- Combining lipophilic ingredients in multi-purpose drugs potentiates the severity of the beneficial properties of each of them.
Review
For citations:
Skotnikov A.S., Melnik M.V., Zinina E.A., Sivertseva I.V. Contribution of lipophilicity to the clinical effects of drugs. Russian Journal of Cardiology. 2024;29(3):5829. (In Russ.) https://doi.org/10.15829/1560-4071-2024-5829. EDN: GJICGY