Preview

Advanced search

Prediction of in-hospital mortality in patients with ST-segment elevation acute myocardial infarction after percutaneous coronary intervention

https://doi.org/10.15829/1560-4071-2023-5414

EDN: UOAERW

Abstract

Aim. Development of models for predicting in-hospital mortality (IHM) in patients with ST-segment elevation myocardial infarction (STEMI) after percutaneous coronary intervention (PCI) based on multivariate logistic regression (MLR).

Material and methods. This retrospective cohort study of 4735 electronic health records of patients (3249 men and 1486 women) with STEMI aged 26 to 93 years with a median of 63 years who underwent PCI was performed. Two groups of persons were identified, the first of which consisted of 321 (6,8%) patients who died in the hospital, while the second — 4413 (93,2%) patients with a favorable PCI outcome. To develop predictive models, univariate logistic regression (ULR) and MLR were used. Model accuracy was assessed using 3 following metrics: area under the ROC curve (AUC), sensitivity, and specificity. The end point was represented by the IHM score in STEMI patients after PCI.

Results. Statistical analysis made it possible to identify factors that are linearly associated with IHM. ULR was used to determine their weight coefficients characterizing the predictive potential. IHM predictive algorithms based on GRACE scale predictors, represented both by ULR model and by 5 factors in continuous MLR model, had acceptable predictive accuracy (AUC — 0,83 and 0,86, respectively). The MLR model had the best quality metrics, the structure of which, in addition to 5 GRACE factors, included left ventricular ejection fraction (LVEF) parameters and white blood cell (WBC) count (AUC — 0,93, sensitivity — 0,87, specificity — 0,86) . The greatest contribution to endpoint was associated with the Killip class and LVEF, and the smallest contribution was associated with WBC and the age of patients.

Conclusion. The predictive accuracy of the developed MLR models was higher than that of the GRACE score. The model with the structure represented by 5 fac­tors GRACE, LV EF and WBC had the highest quality metrics.

About the Authors

B. I. Geltser
Far Eastern Federal University.
Russian Federation

Boris Izralievich Geltser

Vladivostok


Competing Interests:

no conflicts



K. I. Shahgeldyan
Far Eastern Federal University; Vladivostok State University
Russian Federation

Karina Iosifovna Shahgeldyan

Vladivostok


Competing Interests:

no conflicts



I. G. Domzhalov
Far Eastern Federal University; Primorsky Regional Clinical Hospital № 1
Russian Federation

Igor Gennadievich Domzhalov

Vladivostok


Competing Interests:

no conflicts



N. S. Kuksin
Vladivostok State University
Russian Federation

Nikita Sergeevich Kuksin

Vladivostok


Competing Interests:

no conflicts



E. A. Kokarev
Primorsky Regional Clinical Hospital No. 1
Russian Federation

Evgeny Anatolievich Kokarev

Vladivostok


Competing Interests:

no conflicts



V. N. Kotelnikov
Far Eastern Federal University
Russian Federation

Vladimir Nikolaevich Kotelnikov

Vladivostok


Competing Interests:

no conflicts



V. Yu. Rublev
Far Eastern Federal University
Russian Federation

Vladislav Yurievich Rublev

Vladivostok


Competing Interests:

no conflicts



References

1. Нишонов А. Б., Тарасов Р. С., Иванов С. В., Барбараш Л. С. Результаты коронарного шунтирования и чрескожного вмешательства при остром коронарном синдроме без подъема сегмента ST высокого риска. Комплексные проблемы сердечно-сосудистых заболеваний. 2023;12(1):151-9. doi:10.17802/2306-1278-2023-12-1-151-159.

2. Hadanny A, Shouval R, Wu J, et al. Predicting 30-day mortality after ST elevation myocardial infarction: Machine learning- based random forest and its external validation using two independent nationwide datasets. J Cardiol. 2021;78(5):439-46. doi:10.1016/j.jjcc.2021.06.002.

3. Зыков М. В., Дьяченко Н. В., Велиева Р. М. и др. Возможности совместного использования шкалы GRACE и различных индексов коморбидности для повышения эффективности оценки риска госпитальной летальности у больных с острым коронарным синдромом. Терапевтический архив. 2022;94(7):816-21. doi:10.26442/00403660.2022.07.201742.

4. Szabo D, Szabo A, Magyar L, et al. Admission lactate level and the GRACE 2.0 score are independent and additive predictors of 30-day mortality of STEMI patients treated with primary PCI-Results of a real-world registry. PLoS One. 2022;17(11):e0277785. doi:10.1371/journal.pone.0277785.

5. Wilson RS, Malamas P, Dembo B, et al. The CADILLAC risk score accurately identifies patients at low risk for in-hospital mortality and adverse cardiovascular events following ST elevation myocardial infarction. BMC Cardiovasc Disord. 2021;21(1):533. doi:10.1186/s12872-021-02348-0.

6. Figtree GA, Vernon ST, Hadziosmanovic N, et al. Mortality in STEMI patients without standard modifiable risk factors: a sex-disaggregated analysis of SWEDEHEART registry data. Lancet. 2021;397(10279):1085-94. doi:10.1016/S0140-6736(21)00272-5.

7. Гельцер Б. И., Рублев В. Ю., Цива­нюк М. М., Шахгельдян К. И. Машинное обучение в прогнозировании ближайших и отдаленных результатов реваскуляризации миокарда: систематический обзор. Рос­сийский кардиологический журнал. 2021;26(8):4505. doi:10.15829/1560-4071-2021-4505.

8. Lim J, Davies A, Brienesse S, et al. Inflammatory cell response following ST-elevation myocardial infarction treated with primary percutaneous coronary intervention and its impact on cardiovascular outcomes: A systematic review and meta-analysis. Int J Cardiol. 2023;376:1-10. doi:10.1016/j.ijcard.2023.01.082.

9. Dogra N, Puri GD, Thingnam SKS, et al. Early thrombolysis is associated with decrea­sed operative mortality in postinfarction ventricular septal rupture. Indian Heart J. 2019; 71(3):224-8. doi:10.1016/j.ihj.2019.04.011.


Review

For citations:


Geltser B.I., Shahgeldyan K.I., Domzhalov I.G., Kuksin N.S., Kokarev E.A., Kotelnikov V.N., Rublev V.Yu. Prediction of in-hospital mortality in patients with ST-segment elevation acute myocardial infarction after percutaneous coronary intervention. . 2023;28(6):5414. (In Russ.) https://doi.org/10.15829/1560-4071-2023-5414. EDN: UOAERW