Preview

Russian Journal of Cardiology

Advanced search

Current status of nuclear cardiology in the Russian Federation

https://doi.org/10.15829/1560-4071-2022-5134

Abstract

The article is devoted to the analysis of the current status of nuclear cardiology in the Russian Federation. The data on the number of facilities performing radionuclide investigations for the diagnosis and monitoring of the treatment of cardiovascular diseases, their staffing and equipment are given. The statistics of the conducted nuclear cardiology tests for 2018-2020 are given, as well as their methods, features and diagnostic significance are described.

About the Authors

K. V. ZavadovskyZavadovsky
Cardiology Research Institute, Tomsk National Research Medical Center
Russian Federation

Tomsk


Competing Interests:

none



Zh. V. Vesnina
Cardiology Research Institute, Tomsk National Research Medical Center
Russian Federation

Tomsk


Competing Interests:

none



Zh. Zh. Anashbaev
Meshalkin National Medical Research Center
Russian Federation

Novosibirsk


Competing Interests:

none



A. V. Mochula
Cardiology Research Institute, Tomsk National Research Medical Center
Russian Federation

Tomsk


Competing Interests:

none



S. I. Sazonova
Cardiology Research Institute, Tomsk National Research Medical Center
Russian Federation

Tomsk


Competing Interests:

none



Yu. N. Ilyushenkova
Cardiology Research Institute, Tomsk National Research Medical Center
Russian Federation

Tomsk


Competing Interests:

none



V. V. Shipulin
Cardiology Research Institute, Tomsk National Research Medical Center
Russian Federation

Tomsk


Competing Interests:

none



Yu. V. Varlamova
Cardiology Research Institute, Tomsk National Research Medical Center
Russian Federation

Tomsk


Competing Interests:

none



A. A. Ansheles
E.I. Chazov National Medical Research Center of Cardiology
Russian Federation

Moscow


Competing Interests:

none



I. P. Aslanidi
A.N. Bakulev National Medical Research Center for Cardiovascular Surgery
Russian Federation

Moscow


Competing Interests:

none



N. M. Valiullina
Interregional Clinic and Diagnostic Center
Russian Federation

Kazan


Competing Interests:

none



M. N. Vakhromeeva
Pirogov National Medical and Surgical Center
Russian Federation

Moscow


Competing Interests:

none



V. V. Volodina
Volgograd Regional Clinical Cardiology Center
Russian Federation

Volgograd


Competing Interests:

none



G. A. Davydov
A. Tsyba Medical Radiological Research Center — branch of the National Medical Research Center for Radiology
Russian Federation

Obninsk


Competing Interests:

none



E. A. Drizner
Sverdlovsk Regional Oncology Dispensary
Russian Federation

Yekaterinburg


Competing Interests:

none



I. A. Znamensky
Central Clinical Hospital
Russian Federation

Moscow


Competing Interests:

none



E. N. Karpov
Tomsk Regional Oncology Dispensary
Russian Federation

Tomsk


Competing Interests:

none



A. N. Kokov
Research Institute for Complex Issues of Cardiovascular Diseases
Russian Federation

Kemerovo


Competing Interests:

none



N. E. Kudryashova
N.V. Sklifosovsky Research Institute for Emergency Medicine
Russian Federation

Moscow


Competing Interests:

none



S. M. Minin
Meshalkin National Medical Research Center
Russian Federation

Novosibirsk


Competing Interests:

none



S. G. Mirzoyants
Central Clinical Hospital RZD-Medicine
Russian Federation

Moscow


Competing Interests:

none



D. V. Ryzhkova
Almazov Natio nal Medical Research Center
Russian Federation

St. Petersburg


Competing Interests:

none



A. A. Sadchikov
Medical Center AVICENNA
Russian Federation

Novosibirsk


Competing Interests:

none



G. B. Sayfullina
Interregional Clinic and Diagnostic Center
Russian Federation

Kazan


Competing Interests:

none



V. B. Sergienko
E.I. Chazov National Medical Research Center of Cardiology
Russian Federation

Moscow


Competing Interests:

none



M. Ya. Smolyarchuk
Medicine and Nuclear Technologies, OOO
Russian Federation

Moscow


Competing Interests:

none



E. V. Starikova
Chelyabinsk Regional Clinical Hospital
Russian Federation

Chelyabinsk


Competing Interests:

none



V. Yu. Sukhov
Nikiforov All-Russian Center for Emergency and Radia tion Medicine
Russian Federation

St. Petersburg


Competing Interests:

none



S. V. Talantov
S.M. Kirov Military Medical Academy
Russian Federation

St. Peter sburg


Competing Interests:

none



M. V. Tempel
Omsk Regional Clinical Hospital
Russian Federation

Omsk


Competing Interests:

none



D. V. Teffenberg
Multidisciplinary Clinical Medical Center Medical City
Russian Federation

Tyumen


Competing Interests:

none



I. O. Tomashevsky
Central Clinical Hospital RZD-Medicine
Russian Federation

Moscow


Competing Interests:

none



T. A. Trifonova
A.N. Bakulev National Medical Research Center for Cardiovascular Surgery
Russian Federation

Moscow


Competing Interests:

none



V. D. Udodov
Siberian State Medical Univer sity
Russian Federation

Tomsk


Competing Interests:

none



V. I. Chernov
Research Institute of Oncology, Tomsk National Research Medical Center
Russian Federation

Tomsk


Competing Interests:

none



I. V. Shurupova
A.N. Bakulev National Medical Research Center for Cardiovascular Surgery
Russian Federation

Moscow


Competing Interests:

none



References

1. WHO. Leading causes of death and disability 2000-2019: A visual summary of global and regional trends 2000-2019. WHO’s Global Health Estimates (GHE) 2019. https://www.who.int/data/gho/data/themes/mortality-and-global-health-estimates/ghe-leading-causesof-death.

2. Timmis A, Townsend N, Gale CP, et al. European Society of Cardiology: Cardiovascular Disease Statistics 2019. Eur Heart J. 2020;41(1):12-85. doi:10.1093/eurheartj/ehz859.

3. INTERNATIONAL ATOMIC ENERGY AGENCY, Nuclear Cardiology: Guidance on the Implementation of SPECT Myocardial Perfusion Imaging, IAEA Human Health Series No. 23 (Rev. 1), IAEA, Vienna (2016). p. 101. ISBN 978-92-0-107616-8.

4. Beller GA. Future growth and success of nuclear cardiology. J Nucl Cardiol. 2018; 25(2):375-8. doi:10.1007/s12350-018-1211-1.

5. Rozanski A, Gransar H, Hayes SW, et al. Temporal trends in the frequency of inducible myocardial ischemia during cardiac stress testing: 1991 to 2009. J Am Coll Cardiol. 2013;61(10):1054-65.

6. Ansheles AA, Sergienko VB. Nuclear cardiology. Publishing House of the Federal State Budgetary Institution "NMIC of Cardiology" of the Ministry of Health of Russia. Moscow: 2021. 516 p. (In Russ.)

7. Morozov SP, Smolyarchuk MYa, Vladzimirsky AV. PET/CT in Moscow healthcare: equipment, usability, accessibility. Russian Electronic Journal of Radiation Diagnostics. 2018;8(3):318-24. (In Russ.) doi:10.21569/2222-7415-2018-8-3-318-324.EDN YMSOSL.

8. Reyes E, Wiener S, Underwood SR; European Council of Nuclear Cardiology. Myocardial perfusion scintigraphy in Europe 2007: a survey of the European Council of Nuclear Cardiology. Eur J Nucl Med Mol Imaging. 2012;39(1):160-4. doi:10.1007/s00259-011-1923-9.

9. ACC/AHA/ASNC guidelines for the clinical use of cardiac radionuclide imaging — executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/ASNC Committee to Revise the 1995 Guidelines for the Clinical Use of Cardiac Radionuclide Imaging). Circulation. 2003;108:1404-18. doi:10.1161/01.CIR.0000080946.42225.4D.

10. Germano G, Berman DS. Quantification of ventricular function. In: Germano G, Berman DS, eds. Clinical Gated Cardiac SPECT. Oxford, UK: Blackwell Publishing; 2006:93-137.

11. Hayes SW, De Lorenzo A, Hachamovitch R, et al. Prognostic implications of combined prone and supine acquisitions in patients with equivocal or abnormal supine myocardial perfusion SPECT. J Nucl Med. 2003;44:1633-40.

12. Medical Advisory Secretariat. Single photon emission computed tomography for the diagnosis of coronary artery disease: an evidence-based analysis. Ont Health Technol Assess Ser. 2010;10(8):1-64.

13. Zavadovsky KV, Mochula AV, Maltseva AN, et al. The current status of CZT SPECT myocardial blood flow and reserve assessment: Tips and tricks. J Nucl Cardiol. 2021. doi:10.1007/s12350-021-02620-y.

14. Gould KL, Johnson NP, Bateman TM, et al. Anatomic versus physiologic assessment of coronary artery disease: role of CFR, FFR, and PET imaging in revascularization decisionmaking. J Am Coll Cardiol. 2013;62:1639-53. doi:10.1016/j.jacc.2013.07.076.

15. Mochula AV, Maltseva AN, Shipulin VV, et al. Assessment of myocardial blood flow and reserve — physiological basis and clinical significance of perfusion scintigraphy in the examination of patients with chronic coronary syndrome. Russian Journal of Cardiology. 2020;25(2):3649. (In Russ.) doi:10.15829/1560-4071-2020-2-3649.

16. Minin SM, Zavadovky KV, Nikitin NA, et al. Modern possibilities of cardiovascular imaging using gamma cameras with cadmium–zinc–telluride-detectors. Patologiya krovoobrashcheniya i kardiokhirurgiya. 2020;24(3):11-22. (In Russ.) doi:10.21688/1681-3472-20203-11-22.

17. Wells RG, Timmins R, Klein R, et al. Dynamic SPECT measurement of absolute myocardial blood flow in a porcine model. J Nucl Med. 2014;55(10):1685-91. doi:10.2967/jnumed. 114.139782.

18. Miyagawa M, Nishiyama Y, Uetani T, et al. Estimation of myocardial flow reserve utilizing an ultrafast cardiac SPECT: Comparison with coronary angiography, fractional flow reserve, and the SYNTAX score. Int J Cardiol. 2017;244:347-53. doi:10.1016/j.ijcard.2017.06.012.

19. Zavadovsky KV, Mochula AV, Boshchenko AA, et al. Absolute myocardial blood flows derived by dynamic CZT scan vs invasive fractional flow reserve: Correlation and accuracy. J Nucl Cardiol. 2021;28(1):249-59. doi:10.1007/s12350-019-01678-z.

20. Zavadovsky KV, Mochula AV, Maltseva AN, et al. The diagnostic value of SPECT CZT quantitative myocardial blood flow in high-risk patients. J Nucl Cardiol. 2020. doi:10.1007/s12350-020-02395-8.

21. Agostini D, Roule V, Nganoa C, et al. First validation of myocardial flow reserve assessed by dynamic 99mTc-sestamibi CZT-SPECT camera: head to head comparison with 15O-water PET and fractional flow reserve in patients with suspected coronary artery disease. The WATERDAY study. Eur J Nucl Med Mol Imaging. 2018;45(7):1079-90. doi:10.1007/s00259-018-3958-7.

22. Zavadovsky KV, Saushkin VV, Pankova AN, et al. Methodological features of the implementation, processing of results and interpretation of radionuclide equilibrium tomoventriculography data. Radiology is a practice. 2011;6:75-83. (In Russ.)

23. Sibille L, Bouallegue FB, Bourdon A, et al. Comparative values of gated blood-pool SPECT and CMR for ejection fraction and volume estimation. Nucl Med Commun. 2011;32(2):121-8. doi:10.1097/MNM.0b013e32834155f1.

24. Sachpekidis C, Sachpekidis V, Kopp-Schneider A, et al. Equilibrium radionuclide angiography: Intraand inter-observer repeatability and reproducibility in the assessment of cardiac systolic and diastolic function. J Nucl Cardiol. 2021;28(4):1304-14. doi:10.1007/s12350-019-01830-9.

25. Zavadovsky KV, Krivonogov NG, Lishmanov YB. The usefulness of gated blood pool scintigraphy for right ventricular function evaluation in pulmonary embolism patients. Ann Nucl Med. 2014;28(7):632-37. doi:10.1007/s12149-014-0861-6.

26. Zavadovsky KV, Saushkin VV, Khlynin MS, et al. Radionuclide Assessment of Cardiac Function and Dyssynchrony in Children with Idiopathic Ventricular Tachycardia. Pacing Clin Electrophysiol. 2016;39(11):1213-24. doi:10.1111/pace.12948.

27. Saltykova DF, Mareev VYu, Sergienko VB. Comparative assessment of remodeling parameters, volume rates of hemodynamics of the systole and diastole of the right ventricle in patients with CHF and CH–SSF according to 4D tomoventriculography. Journal of Heart failure. 2013;14(5):263-71. (In Russ.)

28. Vasilyeva AE, Georgadze ZO, Volodina VA, et al. Changes in myocardial contractile function and body mass index in patients with coronary heart disease and type 2 diabetes mellitus. Cardiovascular Therapy and Prevention. 2007;6(4):30-6. (In Russ.)

29. Shipulin VV, Andreev SL, Pryakhin AS, et al. Low-dose dobutamine stress gated blood pool SPECT assessment of left ventricular contractile reserve in ischemic cardiomyopathy: a feasibility study. Eur J Nucl Med Mol Imaging. 2022;49(7):2219-2231 doi:10.1007/s00259-022-05714-y.

30. Shipulin VV, Mishkina AI, Gulya MO, et al. Long-term prognosis of repeated remodeling of the left ventricle after surgical treatment of ischemic cardiomyopathy: possibilities of loading radionuclide tomoventriculography. Russian Journal of Cardiology. 2020;25(11):3831. (In Russ.) doi:10.15829/1560-4071-2020-3831.

31. Travin MI. Cardiac radionuclide imaging to assess patients with heart failure. Semin Nucl Med. 2014;44(4):294-313. doi:10.1053/j.semnuclmed.2014.04.005.

32. Zavadovsky KV, Mishkina AI, Lebedev DI, et al. Myocardial scintigraphy with 123I-MIBG in assessing the prognosis of chronic heart failure and the effectiveness of cardiac resynchronization therapy. Kardiologiia. 2020;60(2):122-30. (In Russ.) doi:10.18087/cardio.2020.2.n324.

33. Prokudina ES, Kurbatov BK, Zavadovsky KV, et al. Takotsubo Syndrome: Clinical Manifestations, Etiology and Pathogenesis. Curr Cardiol Rev. 2021;17(2):188-203. doi:10.2174/1573403X16666200129114330.

34. Flotats A, Carrió I, Agostini D, et al. Proposal for standardization of 123I-meta iodoben zylguanidine (MIBG) cardiac sympathetic imaging by the EANM Cardio vascular Committee and the European Council of Nuclear Cardiology. Eur J Nucl Med Mol Imaging. 2010;37(9):1802-12. doi:10.1007/s00259-010-1491-4.

35. Drakos SG, Athanasoulis T, Malliaras KG, et al. Myocardial sympathetic innervation and long-term left ventricular mechanical unloading. JACC Cardiovasc Imaging. 2010;3(1):6470. doi:10.1016/j.jcmg.2009.10.008.

36. Sazonova SI, Varlamova JV, Nikitin NA, et al. Cardiac 123I-mIBG scintigraphy for prediction of catheter ablation outcome in patients with atrial fibrillation. J Nucl Cardiol. 2021;29(5):2220-2231. doi:10.1007/s12350-021-02658-y.

37. Romanov AB, Shabanov VV, Losik DV, et al. Visualization and radiofrequency ablation of foci of sympathetic innervation of the left atrium in patients with paroxysmal atrial fibrillation. Kardiologiia. 2019;59(4):33-8. (In Russ.) doi:10.18087/cardio.2019.4.10249.

38. Ansheles AA, Shchegoleva YaV, Sergienko IV, et al. Features of perfusion and sympathetic innervation of the myocardium according to single-photon emission computed tomography in patients with hypertrophic cardiomyopathy. Cardiological Bulletin. 2016;11(1):24-33. (In Russ.)

39. Ansheles AA, Kuznetsova EG, Martynyuk TV, et al. To study the features of sympathetic activity and myocardial perfusion of the left and right ventricles according to single-photon emission computed tomography of the myocardium in patients with idiopathic pulmonary hypertension. Bulletin of Radiology and Radiology. 2018;99(5):244-52. (In Russ.) doi:10.20862/0042-4676-2018-99-5-244-252.

40. Ilyushenkova J, Sazonova S, Zavadovsky K, et al. Diagnostic Efficacy of Cardiac Scintigraphy with 99mTc-Pyrophosphate for Latent Myocardial Inflammation in Patients with Atrial Fibrillation. Cardiol Res Pract. 2020. doi:10.1155/2020/5983751.

41. Sazonova SI, Lishmanov YuB, Batalov RE, et al. The possibilities of single-photon emission computed tomography with 99mTs-pirfotech combined with perfusion scintigraphy of the myocardium in the assessment of inflammatory changes of the heart in patients with persistent atrial fibrillation. Therapeutic Archive. 2014;86(12):10-4. (In Russ.) doi:10.17116/terarkh2014861210-14.

42. Ilyushenkova YuN, Sazonova SI, Batalov RE. Hybrid imaging methods in the diagnosis of inflammatory processes in the ventricular myocardium in patients with atrial fibrillation of unclear etiology. Bulletin of Radiology and Radiology. 2019;100(3):166-74. (In Russ.) doi:10.20862/0042-4676-2019-100-3-166-174.

43. Sazonova SI, Ilyushenkova YuN, Lishmanov YuB. Modern possibilities of single-photon emission computed tomography in the diagnosis of infectious endocarditis. Russian Electronic Journal of Radiation Diagnostics. 2020;10(1):178-90. (In Russ.)

44. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. European Heart Journal. 2021;42(36):3599-726. doi:10.1093/eurheartj/ehab368.

45. Sazonova SI, Ilyushenkova YuN, Batalov RE, et al. Determination of the effectiveness of single-photon emission computed tomography with leukocytes labeled 99mTc-HMPAO in the diagnosis of myocarditis: comparison of scintigraphy results and histological examination data. Bulletin of Radiology and Radiology. 2015;4:29-34. (In Russ.)

46. Aslanidi IP, Pursanova DM, Mukhortova OV, et al. PET/CT features with 18F-fluo rodeoxyglucose in the diagnosis of vascular prosthesis infection. Surgery. N. I. Pirogov journal. 2021;2:58-66. (In Russ.) doi:10.17116/hirurgia202102158.

47. Konradi YuV, Ryzhkova DV. Radiation diagnosis of heart tumors. Translational medicine. 2015;4:28-40. (In Russ.)

48. Golukhova EZ, Aslanidi IP, Pursanova DM, et al. Positron emission tomography combined with computed tomography with 18F-fluorodeoxyglucose in assessing the prevalence of the infectious process in patients with suspected infectious endocarditis of the prosthetic valve. Creative cardiology. 2020;14(3):245-54. (In Russ.) doi:10.24022/19973187-2020-14-3-245-254. EDN FPRKMD.

49. Allman KC, Shaw LJ, Hachamovitch R, et al. Myocardial viability testing and impact of revascularization on prognosis in patients with coronary artery disease and left ventricular dysfunction: a meta-analysis. J Am Coll Cardiol. 2002;39(7):1151-8. doi:10.1016/s07351097(02)01726-6.

50. Ansheles AA, Sergienko VB, Sinitsyn VE, et al. The impact of the first wave of the pandemic of new coronavirus infection (COVID-19) on the volume of diagnostic studies of car diac diseases in the Russian Federation: results of the Russian segment of the international study INCAPS COVID under the auspices of the International Atomic Energy Agency. Russian Journal of Cardiology. 2021;26(1):4276. (In Russ.) doi:10.15829/1560-4071-2021-4276. EDN KFBDYR.


Supplementary files

Review

For citations:


ZavadovskyZavadovsky K.V., Vesnina Zh.V., Anashbaev Zh.Zh., Mochula A.V., Sazonova S.I., Ilyushenkova Yu.N., Shipulin V.V., Varlamova Yu.V., Ansheles A.A., Aslanidi I.P., Valiullina N.M., Vakhromeeva M.N., Volodina V.V., Davydov G.A., Drizner E.A., Znamensky I.A., Karpov E.N., Kokov A.N., Kudryashova N.E., Minin S.M., Mirzoyants S.G., Ryzhkova D.V., Sadchikov A.A., Sayfullina G.B., Sergienko V.B., Smolyarchuk M.Ya., Starikova E.V., Sukhov V.Yu., Talantov S.V., Tempel M.V., Teffenberg D.V., Tomashevsky I.O., Trifonova T.A., Udodov V.D., Chernov V.I., Shurupova I.V. Current status of nuclear cardiology in the Russian Federation. Russian Journal of Cardiology. 2022;27(12):5134. (In Russ.) https://doi.org/10.15829/1560-4071-2022-5134

Views: 1713


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1560-4071 (Print)
ISSN 2618-7620 (Online)