Preview

Russian Journal of Cardiology

Advanced search

Child’s heart development and contractility from prenatal to postnatal period

https://doi.org/10.15829/1560-4071-2022-4669

Abstract

This literature review analyzes current data on the main stages of child’s heart contractility development from prenatal to postnatal period. The presented information will expand the conventional ideas on the age-related cardiovascular physiology in children, supplementing with relevant knowledge about the patterns of left ventricular mechanics, and the mechanisms affecting child’s heart morphology. In addition, we consider the evolutionary feasibility of the simultaneous existence of various left ventricular mechanics models, which ensure the effective cardiac function in the postnatal period. This is very important for the work of neonatologists, pediatricians, pediatric cardiologists and therapists.

About the Authors

E. N. Pavlyukova
Cardiology Research Institute, Tomsk National Research Medical Center
Russian Federation

Competing Interests:

none



M. V. Kolosova
Siberian State Medical University
Russian Federation

Tomsk


Competing Interests:

none



A. I. Unasheva
Cardiology Research Institute, Tomsk National Research Medical Center
Russian Federation

Competing Interests:

none



G. V. Neklyudova
Cardiology Research Institute, Tomsk National Research Medical Center
Russian Federation

Competing Interests:

none



R. S. Karpov
Cardiology Research Institute, Tomsk National Research Medical Center
Russian Federation

Competing Interests:

none



References

1. Notomi Y, Srinath G, Shiota T, et al. Maturational and adaptive modulation of left ventricular torsional biomechanics. Circulation. 2006;113:2534-41. doi:10.1161/CIRCULATIONAHA.105.537639.

2. Al-Naami GH. Torsion of young hearts: a speckle tracking study of normal infants, children, and adolescents. Eur. J. Echocardiogr. 2010;11(10):853-62. doi:10.1093/ejechocard/jeq078.

3. Yang X, Pabon L, Murry CE. Engineering adolescence: maturation of human pluripotent stem cell–derived cardiomyocytes. Circ. Res. 2014;114(3):511-23. doi:10.1161/CIRCRESAHA.114.300558.

4. Marchianò S, Bertero A, Murry CE. Learn from Your Elders: Developmental Biology Lessons to Guide Maturation of Stem Cell-Derived Cardiomyocytes. Pediatr. Cardiol. 2019;40(7):1367-87. doi:10.1007/s00246-019-02165-5.

5. Padula SL, Velayutham N, Yutzey KE. Transcriptional Regulation of Postnatal Cardiomyocyte Maturation and Regeneration. Int. J. Mol. Sci. 2021;22(6):3288. doi:10.3390/ijms22063288.

6. Faber JW, Hagoort J, Moorman AF, et al. Quantified growth of the human embryonic heart. Biol. Open. 2021;10(2):bio057059. doi:10.1242/bio.057059.

7. Yester JW, Kühn B. Mechanisms of cardiomyocyte proliferation and differentiation in development and regeneration. Curr. Cardiol. Rep. 2017;19(2):13. doi:10.1007/s11886017-0826-1.

8. Aguilar-Sanchez C, Michael M, Pennings S. Cardiac Stem Cells in the Postnatal Heart: Lessons from Development. Stem Cells Int. 2018;2018:1247857. doi:10.1155/2018/1247857.

9. Porter JrGA, Hom JR, Hoffman DL, et al. Bioenergetics, mitochondria, and cardiac myocyte differentiation. Prog. Pediatr. Cardiol. 2011;31(2):75-81. doi:10.1016/j.ppedcard.2011.02.002.

10. Faa A, Podda E, Fanos V. Stem cell markers in the heart of the human newborn. J. Pediatr. Neonat. Individual. Med. 2016;5(2):e050204. doi:10.7363/050204.

11. Garikipati VNS, Singh SP, Mohanram Y, et al. Isolation and characterization of mesenchymal stem cells from human fetus heart. PLoS One. 2018;13(2):e0192244. doi:10.1371/journal.pone.0192244.

12. Popescu LM, Curici A, Wang E, et al. Telocytes and putative stem cells in ageing human heart. J. Cell. Mol. Med. 2015;19(1):31-45. doi:10.1111/jcmm.12509.

13. Buffinton CM, Faas D, Sedmera D. Stress and strain adaptation in load-dependent remodeling of the embryonic left ventricle. Biomech. Model. Mechanobiol. 2013; 12(5):1037-51. doi:10.1007/s10237-012-0461-0.

14. Samsa LA, Yang B, Liu J. Embryonic cardiac chamber maturation: Trabeculation, conduction, and cardiomyocyte proliferation. Am. J. Med. Genet C. Semin. Med. Genet. 2013;163(3):157-68. doi:10.1002/ajmg.c.31366.

15. Courchaine K, Rykiel G, Rugonyi S. Influence of blood flow on cardiac development. Prog. Bbiophys. Mol. Biol. 2018;137:95-110. doi:10.1016/j.pbiomolbio.2018.05.005.

16. Goenezen S, Rennie MY, Rugonyi S. Biomechanics of early cardiac development. Biomech. Model. Mechanobiol. 2012;11(8):1187-204. doi:10.1007/s10237-012-0414-7.

17. Buijtendijk MFJ, Barnett P, van den Hoff MJB. Development of the human heart. Am. J. Med. Genet. C. Semin. Med. Genet. 2020;184(1):7-22. doi:10.1002/ajmg.c.31778.

18. Battista N A, Lane AN, Miller LA. On the dynamic suction pumping of blood cells in tubular hearts. Women in Mathematical Biology. 2017;211-31. doi:10.1007/978-3-319-603049_11.

19. Goenezen S, Chivukula VK, Midgett M, et al. 4D subject-specific inverse modeling of the chick embryonic heart outflow tract hemodynamics. Biomech. Model. Mechanobiol. 2016;15(3):723-43. doi:10.1007/s10237-015-0720-y.

20. Sengupta PP, Korinek J, Belohlavek M, et al. Left ventricular structure and function: basic science for cardiac imaging. J. Am. Coll. Cardiol. 2006;48(10):1988-2001. doi:10.1016/j.jacc.2006.08.030.

21. Pasipoularides A. Diastolic filling vortex forces and cardiac adaptations: probing the epigenetic nexus. Hellenic J. Cardiol. 2012;53(6):458-69.

22. Salman HE, Yalcin HC. Computational Modeling of Blood Flow Hemodynamics for Biomechanical Investigation of Cardiac Development and Disease. J. Cardiovasc. Dev. Dis. 2021;8(2):14. doi:10.3390/jcdd8020014.

23. Wang S, Larina IV. Live mechanistic assessment of localized cardiac pumping in mammalian tubular embryonic heart. J. Biomed. Opt. 2020;25(8):1-19. doi:10.1117/1.JBO.25.8.086001.

24. Vedula V, Seo JH, Lardo AC, et al. Effect of trabeculae and papillary muscles on the hemodynamics of the left ventricle. Theor. Comput. Fluid Dyn. 2016;30:3-21. doi:10.1007/s00162-015-0349-6.

25. Meyer HV, Dawes TJW, Serrani M, et al. Genetic and functional insights into the fractal structure of the heart. Nature. 2020;584(7822):589-94. doi:10.1038/s41586-020-2635-8.

26. Simões FC, Riley PR. The ontogeny, activation and function of the epicardium during heart development and regeneration. Development. 2018;145(7):dev155994. doi:10.1242/dev.155994.

27. Rennie MY, Gahan CG, López CS, et al. 3D imaging of the early embryonic chicken heart with focused ion beam scanning electron microscopy. Microsc. Microanal. 2014;20(4): 1111-9. doi:10.1017/S1431927614000828.

28. Pasipoularides A. Mechanotransduction mechanisms for intraventricular diastolic vortex forces and myocardial deformations: Part 1. J. Cardiovasc. Transl. Res. 2015;8(1):76-87. doi:10.1007/s12265-015-9611-y.

29. Groves AM, Durighel G, Finnemore A, et al. Disruption of intracardiac flow patterns in the newborn infant. Pediatr. Res. 2012;71(4 Pt1):380-5. doi:10.1038/pr.2011.77.

30. Nishitani S, Torii N, Imai H, et al. Development of Helical Myofiber Tracts in the Human Fetal Heart: Analysis of Myocardial Fiber Formation in the Left Ventricle From the Late Human Embryonic Period Using Diffusion Tensor Magnetic Resonance Imaging. J. Am. Heart Assoc. 2020;9(19):e016422. doi:10.1161/JAHA.120.016422.

31. Goktas S, Uslu FE, Kowalski WJ, et al. Time-Series Interactions of Gene Expression, Vascular Growth and Hemodynamics during Early Embryonic Arterial Development. PLoS One. 2016;11(8):e0161611. doi:10.1371/journal.pone.0161611.

32. Sedmera D. Hemodynamics during development and postnatal life. Congenital Heart Diseases: The Broken Heart. Springer, Vienna, 2016. с. 97-107. doi:10.1007/978-3-70911883-2_9.

33. Arvidsson PM, Kovács SJ, Töger J, et al. Vortex ring behavior provides the epigenetic blueprint for the human heart. Sci. Rep. 2016;6(1):22021 doi:10.1038/srep22021.

34. Jouk PS, Truong BL, Michalowicz G, et al. Postnatal myocardium remodelling generates inhomogeneity in the architecture of the ventricular mass. Surg. Radiol. Anat. 2018;40(1):75-83. doi:10.1007/s00276-017-1945-5.

35. Mekkaoui C, Porayette P, Jackowski MP, et al. Diffusion MRI tractography of the developing human fetal heart. PloS One. 2013;8(8):e72795. doi:10.1371/journal.pone.0072795.

36. Patey O, Carvalho JS, Thilaganathan B. Left ventricular torsional mechanics in term fetuses and neonates. Ultrasound Obstet. Gynecol. 2020;55(2):233-41. doi:10.1002/uog.20261.

37. Sedmera D, Thompson RP. Myocyte proliferation in the developing heart. Dev. Dyn. 2011;240(6):1322-34. doi:10.1002/dvdy.22650.

38. Kosharny VV, Slobodyan AN, Abdul-Ogly LV, et al. Features of the formation of the heart wall and its spatial orientation at the stages of prenatal ontogenesis: Monograph. Dnipro: “Serednyak T.K.”, 2017. 148 p. (In Russ.) ISBN: 978-617-7599-39.

39. Spirina GA. Some features of the heart morphology of human fetuses. International Journal of Experimental Education. 2010;7:63-5. (In Russ.)

40. Karbassi E, Fenix A, Marchiano S, et al. Cardiomyocyte maturation: advances in knowledge and implications for regenerative medicine. Nature Reviews Cardiology. 2020;17(6):341-59. doi:10.1038/s41569-019-0331-х.

41. Scuderi GJ, Butcher J. Naturally engineered maturation of cardiomyocytes. Frontiers in cell and developmental biology. 2017;5:50. doi:10.3389/fcell.2017.00050.

42. Mikhailov SS, Chukbar AV, Tsybulkin AG. Human anatomy: textbook: in 2 volumes. Ed. Kolesnikova LL. 5th ed., Rev. and add. GEOTAR-Medio. 2018, 704 p. (In Russ.) ISBN: 978-5-9704-1353-1.

43. Racca AW, Klaiman JM, Pioner JM, et al. Contractile properties of developing human fetal cardiac muscle. J. Physiol. (London). 2016;594:437-52. doi:10.1113/JP271290.

44. Saremi F, Sánchez-Quintana D, Mori S, et al. Fibrous skeleton of the heart: anatomic overview and evaluation of pathologic conditions with CT and MR imaging. Radiographics. 2017;37(5):1330-51. doi:10.1148/rg.2017170004.

45. Karnik R, Uppu SC, Tozzi M, et al. Abnormalities in Left Ventricular Rotation Are Inherent in Young Children with Repaired Tetralogy of Fallot and Are Independent of Right Ventricular Dilation. Pediatr. Cardiol. 2018;39(6):1172-80. doi:10.1007/s00246-018-1877-9.

46. Pavlyukova EN, Kolosova MV, Neklyudova GV, et al. Mechanics of the left ventricle in children aged 1 to 5 years, born with very low and extremely low body weight. Ultrasound and functional diagnostics. 2020;3:74-90. (In Russ.) doi:10.24835/1607-0771-2020-374-90.

47. Buckberg GD, Nanda NC, Nguyen C. What Is the Heart? Anatomy, Form, Function, and Misconceptions. Journal of Cardiovascular Development and Disease. 2018;5(2):33. doi:10.3390/jcdd5020033.

48. Hoffman JIE. Will the real ventricular architecture please stand up? Physiological reports. 2017;5:18. doi:10.14814/phy2.13404.


Supplementary files

Review

For citations:


Pavlyukova E.N., Kolosova M.V., Unasheva A.I., Neklyudova G.V., Karpov R.S. Child’s heart development and contractility from prenatal to postnatal period. Russian Journal of Cardiology. 2022;27(1):4669. (In Russ.) https://doi.org/10.15829/1560-4071-2022-4669

Views: 659


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1560-4071 (Print)
ISSN 2618-7620 (Online)