Preview

Russian Journal of Cardiology

Advanced search

Possibilities for predicting ventricular tachyarrhythmias in patients with heart failure with reduced ejection fraction based on surface electrocardiography. First results from a single-center prospective study

https://doi.org/10.15829/1560-4071-2021-4661

Abstract

According to current clinical guidelines, the risk of life-threatening ventricular tachyarrhythmias (VTAs) in patients with heart failure (HF) is determined by left ventricular ejection fraction (LVEF). The available clinical and experimental data indicate the imperfection of this one-factor approach, which specifies the need to search for new predictors of VTAs. In this prospective study, we performed a comparative analysis of surface electrocardiographic parameters in HF patients with LVEF ≤35% without syncope or sustained ventricular arrhythmias in history, who were implanted with cardioverter defibrillator as a primary prevention of sudden cardiac death. During the two-year follow-up, the primary endpoint (new-onset persistent VTA episode, or VTA/ventricular fibrillation that required electrotherapy) was recorded in 42 patients (25,5%). The secondary endpoint (an increase in LVEF by 5% or more of the initial level against the background of cardiac resynchronization therapy) was more often recorded in the group of patients without VTAs (41 (33%) vs 4 (9,5%), p=0,005). The studied cohort of patients was characterized by a left axis deviation (72%), LV hypertrophy signs (84%), impaired intra-atrial (P wave duration of 120 (101-120) ms) and intraventricular conduction (QRS duration of 140 (110-180) ms), ventricular electrical systole prolongation (QTcor — 465 (438-504) ms). Differences between the groups divided depending on reaching the primary endpoint in terms of the Cornell product, Cornell voltage index and ICEB, as well as the detection rate of complete left bundle branch block morphology had levels of significance close to critical (p=0,09; p=0,05; p=0,1; p=0,09, respectively). The multivariate predictive model included following factors: Cornell product, Tp-Te/ QRS, P wave duration (diagnostic efficiency of the model was 60%: sensitivity, 61,1%, specificity, 59,6%; p=0,007).

About the Authors

N. N. Ilov
Astrakhan State Medical University; Federal Center for Cardiovascular Surgery
Russian Federation

Ilov Nikolay N., Associate Professor of the department of cardiovascular surgery, M.D. Cardiovascular surgeon of the department of surgical treatment of complex arrhythmias and pacemaker implantations

Astrakhan


Competing Interests:

 

 



O. N. Surikova
Federal Center for Cardiovascular Surgery

Surikova Olga N., doctor of functional diagnostics

Astrakhan



S. A. Boytsov
National Medical Research Center of Cardiology

Boytsov Sergey A., Director of the  National Medical Research Center of Cardiology of the Russian Ministry of Healthcare, MD, PhD, Professor, Academician of the Russian Academy of Sciences

Moscow



D. A. Zorin
Astrakhan State Medical University

Zorin Dmitry A., clinical fellow of the department of cardiovascular surgery, M.D.

Astrakhan



A. A. Nechepurenko
Federal Center for Cardiovascular Surgery

Nechepurenko Anatoly A., head of the department of surgical treatment of complex arrhythmias and pacemaker implantations, M.D

Astrakhan



References

1. Marume K, Noguchi T, Tateishi E, et al. Mortality and Sudden Cardiac Death Risk Stratification Using the Noninvasive Combination of Wide QRS Duration and Late Gadolinium Enhancement in Idiopathic Dilated Cardiomyopathy. Circ Arrhythmia Electrophysiol. 2018;11(4):e006233. doi:10.1161/CIRCEP.117.006233.

2. Narayanan K, Reinier K, Teodorescu C, et al. Electrocardiographic versus echocardiographic left ventricular hypertrophy and sudden cardiac arrest in the community. Hear Rhythm. 2014;11:1040-6. doi:10.1016/j.hrthm.2014.03.023.

3. O’Neal WT, Singleton MJ, Roberts JD, et al. Association between QT-interval components and sudden cardiac death: The ARIC study (Atherosclerosis Risk in Communities). Circ Arrhythmia Electrophysiol. 2017;10(10):e005485. doi:10.1161/CIRCEP.117.005485.

4. Tse G, Gong M, Wong WT, et al. The Tpeak — Tend interval as an electrocardiographic risk marker of arrhythmic and mortality outcomes: A systematic review and meta-analysis. Hear Rhythm. 2017;14:1131-7. doi:10.1016/j.hrthm.2017.05.031.

5. Rosenbaum DS, Jackson LE, Smith JM, et al. Electrical Alternans and Vulnerability to Ventricular Arrhythmias. N Engl J Med. 1994;330:235-41. doi:10.1056/NEJM199401273300402.

6. Pranata R, Yonas E, Vania R, et al. Electrocardiographic early repolarization is associated with future ventricular arrhythmia after acute myocardial infarction — Systematic Review and Meta-Analysis. J Arrhythmia. 2019;35:626-35. doi:10.1002/joa3.12196.

7. Tse G, Yan BP. Traditional and novel electrocardiographic conduction and repolarization markers of sudden cardiac death. EP Eur. 2017;19:712-21. doi:10.1093/europace/euw280.

8. Al-Khatib SM, Stevenson WG, Ackerman MJ, et al. 2017 AHA/ACC/HRS Guideline for Management of Patients With Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death: Executive Summary. Circulation 2018;138:e210-71. doi:10.1161/CIR.0000000000000548.

9. Revishvili ASh, Shlyakhto EV, Popov SV, et al. Clinical recommendations for electrophysiological studies, catheter ablation and the use of implantable antiarrhythmic devices. 2017. p. 701. (In Russ.) https://vnoa.ru/upload/iblock/cd5/cd57f453997c457aedeb3b7dff7bdf97.pdf.

10. Schmitt C, Alt E, Plewan A, Schomig A. Initial experience with implantation of internal cardioverter/defibrillators under local anaesthesia by electrophysiologists. Eur Heart J. 1996;17:1710-6. doi:10.1093/oxfordjournals.eurheartj.a014755.

11. Daubert J-C, Saxon L, Adamson PB, et al. 2012 EHRA/HRS expert consensus statement on cardiac resynchronization therapy in heart failure: implant and follow-up recommendations and management: A registered branch of the European Society of Cardiology (ESC), and the Heart Rhythm Society; and in col. Europace. 2012;14:1236-86. doi:10.1093/europace/eus222.

12. Covino G, Volpicelli M, Capogrosso P. Automatic Continuous CRT Optimization to Improve Hemodynamic Response: An Italian Single-Center Experience. Int J Vasc Med. 2020;2020. doi:10.1155/2020/7942381.

13. Stiles MK, Fauchier L, Morillo CA, et al. 2019 HRS/EHRA/APHRS/LAHRS focused update to 2015 expert consensus statement on optimal implantable cardioverterdefibrillator programming and testing. EP Eur. 2019;21:1442-3. doi:10.1093/europace/euz065.

14. Strickberger SA, Hummel JD, Bartlett TG, et al.; AMIOVIRT Investigators. Amiodarone versus implantable cardioverter-defibrillator:randomized trial in patients with nonischemic dilated cardiomyopathy and asymptomatic nonsustained ventricular tachycardia — AMIOVIRT. J Am Coll Cardiol. 2003;41(10):1707-12. doi:10.1016/s0735-1097(03)00297-3.

15. Amara N, Boveda S, Defaye P, et al. Implantable cardioverter-defibrillator therapy among patients with non-ischaemic vs. ischaemic cardiomyopathy for primary prevention of sudden cardiac death. EP Eur. 2017;20:65-72. doi:10.1093/europace/euw379.

16. Aro AL, Huikuri H V, Tikkanen JT, et al. QRS-T angle as a predictor of sudden cardiac death in a middle-aged general population. Europace. 2012;14:872-6. doi:10.1093/europace/eur393.

17. Yakovenko EI. ECG Diagnostics of left ventricular hypertrophy. Russian Journal of Cardiology. 2009;(5):79-83. (In Russ.)

18. Li H, Lichter JG, Seidel T, et al. Cardiac Resynchronization Therapy Reduces Subcellular Heterogeneity of Ryanodine Receptors, T-Tubules, and Ca2+ Sparks Produced by Dyssynchronous Heart Failure. Circ Hear Fail. 2015;8:1105-14. doi:10.1161/CIRCHEARTFAILURE.115.002352.

19. Aiba T, Hesketh GG, Barth AS, et al. Electrophysiological Consequences of Dyssynchronous Heart Failure and Its Restoration by Resynchronization Therapy. Circulation. 2009;119:1220-30. doi:10.1161/CIRCULATIONAHA.108.794834.

20. Kristensen SL, Castagno D, Shen L, et al. Prevalence and incidence of intra‐ventricular conduction delays and outcomes in patients with heart failure and reduced ejection fraction: insights from PARADIGM‐HF and ATMOSPHERE. Eur J Heart Fail. 2020;22:2370- 9. doi:10.1002/ejhf.1972.

21. Killu AM, Mazo A, Grupper A, et al. Super-response to cardiac resynchronization therapy reduces appropriate implantable cardioverter defibrillator therapy. Europace. 2018;20:1303-11. doi:10.1093/europace/eux235.

22. Lawin D, Stellbrink C. Change in indication for cardiac resynchronization therapy? Eur J Cardio-Thoracic Surg. 2019;55:i11-6. doi:10.1093/ejcts/ezy488.

23. Ilov NN, Palnikova OV, Stompel DR, et al. Risk stratification of sudden cardiac death in heart failure patients: is left ventricular ejection fraction alone sufficient? Russian Journal of Cardiology. 2021;26(1):3959. (In Russ.) doi:10.15829/1560-4071-2021-3959.

24. Porthan K, Kenttä T, Niiranen TJ, et al. ECG left ventricular hypertrophy as a risk predictor of sudden cardiac death. Int J Cardiol. 2019;276:125-9. doi:10.1016/j.ijcard.2018.09.104.

25. Ramalho D, Freitas J. Drug-induced life-threatening arrhythmias and sudden cardiac death: A clinical perspective of long QT, short QT and Brugada syndromes. Rev Port Cardiol (English Ed.) 2018;37:435-46. doi:10.1016/j.repce.2017.07.010.

26. Rosenthal TM, Stahls PF, Abi Samra FM, et al. T-peak to T-end interval for prediction of ventricular tachyarrhythmia and mortality in a primary prevention population with systolic cardiomyopathy. Hear Rhythm. 2015;12:1789-97. doi:10.1016/j.hrthm.2015.04.035.

27. Aro AL, Reinier K, Rusinaru C, et al. Electrical risk score beyond the left ventricular ejection fraction: prediction of sudden cardiac death in the Oregon Sudden Unexpected Death Study and the Atherosclerosis Risk in Communities Study. Eur Heart J. 2017;38:3017-25. doi:10.1093/eurheartj/ehx331.

28. Goette A, Kalman JM, Aguinaga L, et al. EHRA/HRS/APHRS/SOLAECE expert consensus on atrial cardiomyopathies: definition, characterization, and clinical implication. Europace. 2016;18:1455-90. doi:10.1093/europace/euw161.

29. Maheshwari A, Norby FL, Soliman EZ, et al. Association of P-Wave Abnormalities With Sudden Cardiac and Cardiovascular Death: The ARIC Study. Circ Arrhythm Electrophysiol. 2021;14(2):e009314. doi:10.1161/CIRCEP.120.009314.

30. National guidelines for determining the risk and prevention of sudden cardiac death. Working Group on the preparation of the text of recommendations: Shlyakhto E.V., Arutyunov G.P., Belenko Yu.N., Boytsov S.A. Chairman of the Committee of Experts: Ardashev A.V. 2nd edition. Moscow: Publishing house “Medpraktika-M”, 2018. 247 p. (In Russ.) ISBN: 978-5-98803-397-4.

31. Tereshchenko LG, Henrikson CA, Sotoodehnia N, et al. Electrocardiographic Deep Terminal Negativity of the P Wave in V 1 and Risk of Sudden Cardiac Death: The Athero - sclerosis Risk in Communities (ARIC) Study. J Am Heart Assoc. 2014;3(6):e001387. doi:10.1161/JAHA.114.001387.

32. Chen LY, Soliman EZ. P Wave Indices — Advancing Our Understanding of Atrial Fibrilla - tion-Related Cardiovascular Outcomes. Front Cardiovasc Med. 2019;6:53. doi:10.3389/fcvm.2019.00053.

33. Tiffany Win T, Ambale Venkatesh B, Volpe GJ, et al. Associations of electrocardiographic P-wave characteristics with left atrial function, and diffuse left ventricular fibrosis defined by cardiac magnetic resonance: The PRIMERI Study. Hear Rhythm. 2015;12:155-62. doi:10.1016/j.hrthm.2014.09.044.


Supplementary files

Review

For citations:


Ilov N.N., Surikova O.N., Boytsov S.A., Zorin D.A., Nechepurenko A.A. Possibilities for predicting ventricular tachyarrhythmias in patients with heart failure with reduced ejection fraction based on surface electrocardiography. First results from a single-center prospective study. Russian Journal of Cardiology. 2021;26(12):4661. (In Russ.) https://doi.org/10.15829/1560-4071-2021-4661

Views: 586


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1560-4071 (Print)
ISSN 2618-7620 (Online)