Predictive value of global longitudinal strain and geometry of left ventricle in patients with noncompaction cardiomyopathy
https://doi.org/10.15829/1560-4071-2021-4622
Abstract
Aim. To assess the prognostic role of a decrease in longitudinal strain and an increase in the left ventricular sphericity index as predictors of NYHA class III heart failure (HF) progression, requiring hospitalization in a cohort of patients with noncompaction cardiomyopathy (NCM) in combination with dilated cardiomyopathy (DCM).
Material and methods. We examined 90 patients with a combination of NCM and DCM aged 18 to 72 years (median age, 41 years; men — 73; women — 17), who, in addition to conventional echocardiographic and magnetic resonance imaging (MRI) characteristics, were studied for two-dimensional strain and global longitudinal strain (GLS) parameters and left ventricular sphericity index (SI) using cardiac MRI. The endpoints included NYHA class III HF progression, requiring hospitalization.
Results. During the follow-up period (median follow-up, 36 (6; 152) months) in 59 of 90 (65,5%) patients with NCM in combination with DCM, symptoms progressed to NYHA class III HF, requiring hospitalization. Multivariate analysis showed following independent risk factors for HF-related hospitalization: a decrease in GLS <10% (hazard ratio (HR), 5,1; 95% confidence interval (CI), 1,6-16,7, p<0,007) and an increase in SI >0,5 (HR, 9,0; 95% CI, 2,2-37,8, p<0,003) .The 3-year event-free survival rate for patients with one risk factor (GLS, %<10 and SI <0,5; GLS, %>10 and SI >0,5) was 79,2±16,9% and 64,4±24,6%, respectively, while for the group with two risk factors (GLS, %<10 and SI>0,5) — 12,3%.
Conclusion. Global longitudinal strain characteristics according to 2D Strain echocardiography and SI according to cardiac MRI are associated with adverse events in NCM and DCM combination and can be used to identify patients with a high risk of HF progression to NYHA class III, requiring hospitalization.
About the Authors
S. M. KomissarovaBelarus
Minsk.
Competing Interests:
No
O. V. Krasko
Belarus
Minsk.
Competing Interests:
No
N. M. Rineyskaya
Belarus
Minsk.
Competing Interests:
No
A. A. Efimova
Belarus
Minsk.
Competing Interests:
No
References
1. Arbustini E, Weidemann F, Hall J. Left ventricular noncompaction: a distinct cardiomyopathy or a trait shared by different cardiac diseases? J Am Coll Cardiol. 2014;64:1840-50. doi:10.1016/j.jacc.2014.08.030.
2. Arbustini E, Narula N, Dec GW, et al. The MOGE(S) classification for a phenotypegenotype nomenclature of cardiomyopathy: endorsed by the World Heart Federation. J Am Coll Cardiol. 2013;62:2046-72. doi:10.1016/j.jacc.2013.08.1644.
3. Arbustini E, Favalli V, Narula N, et al. Left Ventricular Noncompaction: A Distinct Genetic Cardiomyopathy? J. of the Am. Coll. of Cardiol. 2016;68(9):949-66. doi:10.1016/j.jacc.2016.05.096.
4. Aung N, Doimo S, Ricci F, et al. Prognostic Significance of left ventricular noncompaction. Systematic Review and Meta-analysis of observational studies. Circ Cardiovasc Imaging. 2020;13(1):e009712. doi:10.1161/CIRCIMAGING.119.009712.
5. Grigoratos C, Barison A, Ivanov A, et al. Meta-Analysis of the prognostic role of Late Gadolinium enhancement and global systolic impairment in left ventricular noncompaction. JACC Cardiovasc Imaging. 2019;12(11 Pt 1):2141-51. doi:10.1016/j.jcmg.2018.12.029.
6. Dursun M, Agayev A, Nisli K, et al. MR imaging features of ventricular noncompaction: emphasis on distribution and pattern of fibrosis. Eur J Radiol. 2010;74(1):147-51. doi:10.1016/j.ejrad.2009.01.015.
7. Nucifora G, Aquaro GD, Pingitore A, et al. Myocardial fibrosis in isolated left ventricular non-compaction and its relation to disease severity. Eur J Heart Fail. 2011;13(2):170-6. doi:10.1093/eurjhf/hfq222.
8. Wan J, Zhao S, Cheng H, et al. Varied distributions of late gadolinium enhancement found among patients meeting cardiovascular magnetic resonance criteria for isolated left ventricular non-compaction. J Cardiovasc Magn Reson. 2013;15(1):20. doi:10.1186/1532-429X-15-20.
9. Szemraj J, Masiarek K, Majos A, et al. Circulating microRNAs as biomarkers for myocardial fibrosis in patients with left ventricular non-compaction cardiomyopathy. Arch Med Sci. 2019;15(2):376-84. doi:10.5114/aoms.2019.82919.
10. Araujo-Filho JAB, Assuncao AN, Tavares De Melo MD, et al. Myocardial T1 mapping and extracellular volume quantification in patients with left ventricular non-compaction cardiomyopathy. Eur Heart J Cardiovasc Imaging. 2018;19(8):888-95. doi:10.1093/ehjci/jey022.
11. Ashrith G, Gupta D, Light-McGroary KA, et al. Cardiovascular magnetic resonance characterization of left ventricular non-compaction provides independent prognostic information in patients with incident heart failure or suspected cardiomyopathy. J Cardiovasc Magn Reson. 2014;16(1):64. doi:10.1186/s12968-014-0064-2.
12. Zhou H, Lin X, Fang L, et al. Characterization of compacted myocardial abnormalities by cardiac magnetic resonance with native T1 mapping in left ventricular non-compaction patients. Circ J. 2016;80(5):1210-6. doi:10.1253/circj.CJ-15-1269.
13. Liang Y, Li W, Zeng R, et al. Left Ventricular Spherical Index Is an Independent Predictor for Clinical Outcomes in Patients with Nonischemic Dilated Cardiomyopathy. J Am Coll Cardiol Img. 2019;12(8_Part_1):1578-80. doi:10.1016/j.jcmg.2019.01.003.
14. Riffel JH, Keller MGP, Rost F, et al. Left ventricular long axis strain: a new prognosticator in non-ischemic dilated cardiomyopathy? J Cardiovasc Magn Reson. 2016;18:36. doi:10.1186/s12968-016-0255-0.
15. Gjesdal O, Yoneyama K, Mewton N, et al. Reduced long axis strain is associated with heart failure and cardiovascular events in the multiethnic study of Atherosclerosis. J Magn Reson Imaging. 2016;44(1):178-85. doi:10.1002/jmri.25135.
16. Kalam K, Otahal P, Marwick TH. Prognostic implications of global LV dysfunction a systematic review and meta-analysis of global longitudinal strain and ejection fraction. Heart. 2014;100(21):1673-80. doi:10.1136/heartjnl-2014-305538.
17. Lang R, Bierig M, Devereux R, et al. Recommendations for chamber quantification: a report from the American Society of Echocardiography's Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J Am Soc Echocardiogr. 2005;18(12):1440-63. doi:10.1016/j.echo.2005.10.005.
18. Gottdiener J, Bednarz J, Devereux R, et al. American Society of Echocardiography recommendations for use of echocardiography in clinical trials. J Am Soc Echocardiogr. 2004;17(10):1086-119. doi:10.1016/j.echo.2004.07.013.
19. Jenni R, Oechslin E, Schneider J, et al. Echocardiographic and pathoanatomical characteristics of isolated left ventricular non-compaction: a step towards classification as a distinct cardiomyopathy. Heart (British Cardiac Society). 2001;86(6):666-71.
20. Petersen SE, Selvanayagam JB, Wiesmann F, et al. Left ventricular non-compaction: insights from cardiovascular magnetic resonance imaging. Journal of the American College of Cardiology. 2005;46(1):101-5. doi:10.1016/j.jacc.2005.03.045.
21. Jacquier A, Thuny F, Jop B, et al. Measurement of trabeculated left ventricular mass using cardiac magnetic resonance imaging in the diagnosis of left ventricular non-compaction. European Heart Journal. 2010;31(9):1098-104. doi:10.1093/eurheartj/ehp595.
22. Ponikowski P, Voors A, Anker S, et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. European Heart Journal. 2016;37(27):2129-200. doi:10.1093/eurheartj/ehw128.
23. Lausen B, Hothorn T, Bretz F, et al. Assessment of Optimal Selected Prognostic Factors. Biometrical Journal. 2004;46(3):364-74. doi:10.1002/bimj.200310030.
24. Therneau T. A Package for Survival Analysis, 2015. S package version 2.38. https:// CRAN.R-project.org/package=survival.
25. Torsten H. maxstat: Maximally Selected Rank Statistics, 2015. R package version 0.7-22. http://cran.r-project.org/package=maxstat.
26. Andreini D, Pontone G, Bogaert J, et al. Long-Term Prognostic Value of Cardiac Magnetic Resonance in Left Ventricle Noncompaction: A Prospective Multicenter Study. J Am Coll Cardiol. 2016;68(20):2166-81. doi:10.1016/j.jacc.2016.08.053.
Supplementary files
Review
For citations:
Komissarova S.M., Krasko O.V., Rineyskaya N.M., Efimova A.A. Predictive value of global longitudinal strain and geometry of left ventricle in patients with noncompaction cardiomyopathy. Russian Journal of Cardiology. 2021;26(11):4622. (In Russ.) https://doi.org/10.15829/1560-4071-2021-4622