Biochemical markers of coronary atherosclerosis: building models and assessing their prognostic value regarding the lesion severity
https://doi.org/10.15829/1560-4071-2021-4559
Abstract
Aim. To assess the individual and complex prognostic value of various blood biochemical parameters (biomarkers) in the non-invasive diagnosis of coronary artery (CA) atherosclerosis.
Material and methods. The study included 216 patients (men, 115; women, 101) aged 24 to 87 years (mean age, 61,5±10,7 years), who underwent indicated coronary angiography. All patients underwent a biochemical blood tests to determine the parameters of lipid, carbohydrate and nitrogen metabolism, the hemostatic system, inflammatory markers, as well as the creatinine level as an indicator of renal function.
Results. Analysis revealed biomarkers, the deviations in the level of which contribute to the diagnosis and determination of the coronary involvement. These biomarkers include glucose, creatinine, C-reactive protein, and adiponectin. Using these biochemical parameters, a multivariate model (MVM) was constructed, which was significant for the diagnosis of coronary atherosclerosis and determination of its severity. With the help of ROC-analysis, the cutoff point of MVM of 2 was found. MVM >2 with a sensitivity of 72% indicate CA atherosclerosis of any severity, as well as with a specificity of 62,5%, it can be ruled out. Using MVM data and a cutoff point of 2, a binary logistic regression model was built, according to which, with a MVM >2, the odds for detecting CA atherosclerosis of any degree is 2,1 times higher (95% confidence interval (CI), 1,2-3,8; p=0,010), severe CA — 4,7 times (95% CI, 1,9-12,0; p=0,001) compared with individuals with MVM ≤2, who have 2,8 times (95% CI, 1,4-4,9; p=0,002) a higher chance of detecting intact CAs.
Conclusion. Thus, the total MVM score of 0-2 indicates the absence of coronary atherosclerosis, while 3-4 points -CA atherosclerosis of any severity.
About the Authors
M. V. ZhatkinaRussian Federation
Moscow.
Competing Interests:
No
V. A. Metelskaya
Russian Federation
Moscow.
Competing Interests:
No
N. E. Gavrilova
Russian Federation
Moscow.
Competing Interests:
No
E. B. Yarovaya
Russian Federation
Moscow.
Competing Interests:
No
Yu. K. Makarova
Russian Federation
Moscow.
Competing Interests:
No
O. A. Litinskaya
Russian Federation
Moscow.
Competing Interests:
No
N. L. Bogdanova
Russian Federation
Moscow.
Competing Interests:
No
B. A. Rudenko
Russian Federation
Moscow.
Competing Interests:
No
O. M. Drapkina
Russian Federation
Moscow.
Competing Interests:
No
References
1. Andreev EM. Mortality in Moscow and other megacities of the world: similarities and differences. Demographic review. 2016;3(3):39-79. (In Russ.)
2. Vasan RS. Biomarkers of cardiovascular disease: molecular basis and practical considerations. Circulation. 2006;113:2335-62. doi:10.1161/CIRCULATIONAHA.104.482570.
3. Huang Y, Gulshan K, Nguyen T, Wu Y. Biomarkers of Cardiovascular Disease. Dis Markers. 2017;2017:8208609. doi:10.1155/2017/8208609.
4. Lyngbakken MN, Myhre MR, R0sj0 H. Novel biomarkers of cardiovascular disease: Applications in clinical practice. Crit Rev Clin Lab Sci. 2019;56(1):33-60. doi:10.1080/10408363.2018.1525335.
5. Preiss D, Sattar N. Lipids, lipid modifying agents and cardiovascular risk: a review of the evidence. Clin Endocrinol. 2009;70:815-28. doi:10.1111/j.1365-2265.2008.03490.
6. Oravec S, Dukat A, Gavornik P, et al. Atherogenic normolipidemia — a new phenomenon in the lipoprotein profile of clinically healthy subjects. Neuro Endocrinol Lett. 2011;V32(3):317-21.
7. Subirana I, Fito M, Diaz O, et al. Prediction of coronary disease incidence by biomarkers of inflammation, oxidation, and metabolism. Sci Rep. 2018;8(1):3191. doi:10.1038/s41598-018-21482-y.
8. Wang TJ, Gona P, Larson MG, et al. Multiple biomarkers for the prediction of first major cardiovascular events and death. N Engl J Med. 2006;355:2631-9. doi:10.1056/NEJMoa055373.
9. Melander O, Newton-Cheh C, Almgren P, et al. Novel and conventional biomarkers for prediction of incident cardiovascular events in the community. JAMA. 2009;302:49-57. doi:10.1001/jama.2009.943.
10. Blankenberg S, Zeller T, Saarela O, et al. Contribution of 30 biomarkers to 10-year cardiovascular risk estimation in 2 population cohorts: the MONICA, risk, genetics, archiving, and monograph (MORGAM) biomarker project. Circulation. 2010;121:2388-97. doi:10.1161/CIRCULATIONAHA.109.901413.
11. Metelskaya VA, Gavrilova NE, Yarovaya Е А, et al. An integrative biomarker: opportunities for non-invasive diagnostics of coronary atherosclerosis. Russ J Cardiol. 2017;(6):132-8. (In Russ.) doi:10.15829/1560-4071-2017-6-132-138.
12. Merkulov EV, Mironov VM, Samko AN. Coronary angiography, ventriculography, bypass angiography in graphics and diagrams. M.: Media Medika 2011. p.100. (In Russ.)
13. Mach F, Baigent C, Catapano AL, et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Eur Heart J. 2020;41:111-88. doi:10.1093/eurheartj/ehz455.
14. 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Russian Journal of Cardiology. 2020;25(4):3839. (In Russ.) doi:10.15829/1560-4071-2020-3839.
15. Genkel VV, Kuznetsova AS, Salashenko AO, et al. Increased level of highly sensitive C-reactive protein as a marker of multifocal atherosclerosis in patients with cardiovascular diseases. Medical Board. 2019;(16):86-93. (In Russ.) doi:10.21518/2079-701X-2019-16-86-93.
16. Metelskaya VA, Gumanova NG. Screening-method for determining the level of nitrogen oxide metabolites in blood serum. Clinical laboratory diagnostics. 2005;6:15-8. (In Russ.)
17. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. Russian Journal of Cardiology. 2020;25(2):3757. (In Russ.) doi:10.15829/1560-4071-2020-2-3757.
18. Shuvaev IP, Asymbekova EU, Buziashvili YuI. Features of coronary heart disease in metabolic syndrome. Creative cardiology. 2017;11(1):20-30. (In Russ.) doi:10.15275/kreatkard.2017.01.03.
19. Lakka HM, Laaksonen DE, Lakka TA, et al. The metabolic syndrome and total and cardiovascular disease mortality in middle-aged men. JAMA. 2002;4;288(21):2709-16. doi:10.1001/jama.288.21.2709.
20. American Diabetes Association. Standards of medical care in diabetes. Diabetes Care. 2004;43(Suppl 1):S14-S31. doi:10.2337/dc20-S002.
21. Danesh J, Lewington S, Thompson SG, et al. Plasma fibrinogen level and the risk of major cardiovascular diseases and nonvascular mortality: an individual participant metaanalysis. JAMA. 2005;294(14):1799-809. doi:10.1001/jama.294.14.1799.
22. Ridker PM, Buring JE, Cook NR, Rifai N. C-reactive protein, the metabolic syndrome, and risk of incident cardiovascular events: an 8-year follow-up of 14719 initially healthy American women. Circulation. 2003;107(3):391-7. doi:10.1161/01.cir.0000055014.62083.05.
23. Ridker PM, Hennekens CH, Buring JE, Rifai N. C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women. N Engl J Med. 2000;342:836-43. doi:10.1056/NEJM200003233421202.
24. Cheng JM, Oemrawsingh RM, Garcia-Garcia HM, et al. Relation of C-reactive protein to coronary plaque characteristics on grayscale, radiofrequency intravascular ultrasound, and cardiovascular outcome in patients with acute coronary syndrome or stable angina pectoris (from the ATHEROREMO-IVUS study). Am J Cardiol. 2014;114(10):1497-503. doi:10.1016/j.amjcard.2014.08.013.
25. 2016 Europen guidelines on cardiovascular disease prevention in clinical practice. Russ J Cardiol. 2017;(6):7-85. (In Russ.) doi:10.15829/1560-4071-2017-6-7-85.
26. Granger DL, Anstey NM, Miller WC, Weinberg JB. Measuring nitric oxide production in human clinical studies. Methods enzymol. 1999;301:49-61. doi:10.1016/s0076-6879(99)01068-x.
27. Bachetti T, Comini L, Pasini E, et al. ACE-inhibition with quinapril modulates the nitric oxide pathway in normotensive rats. J Mol Cell Cardiol. 2001;33:395-403. doi:10.1006/jmcc.2000.1311.
28. Gumanova NG, Deev AD, Zhang W, et al. Serum nitrite and nitrate levels, NOx, can predict cardiovascular mortality in the elderly in a 3-year follow-up study. Biofactors. 2016;43(1):82-9. doi:10.1002/biof.1321.
29. Naseem KM. The role of nitric oxide in cardiovascular diseases. Mol Aspects Med. 2005;26(1-2):33-65. doi:10.1016/j.mam.2004.09.
Supplementary files
Review
For citations:
Zhatkina M.V., Metelskaya V.A., Gavrilova N.E., Yarovaya E.B., Makarova Yu.K., Litinskaya O.A., Bogdanova N.L., Rudenko B.A., Drapkina O.M. Biochemical markers of coronary atherosclerosis: building models and assessing their prognostic value regarding the lesion severity. Russian Journal of Cardiology. 2021;26(6):4559. https://doi.org/10.15829/1560-4071-2021-4559