Role of catestatin in development and decompensation of heart failure: a literature review
https://doi.org/10.15829/1560-4071-2021-4492
Abstract
The current literature review covers the role of sympathetic nervous system activation (SNS) and the significance of a new biomarker catestatin (CST), which is a chromogranin A-derived peptide, for assessing prognosis of patients with heart failure (HF). This review details the works devoted to CST metabolism and its role in clinical conditions with excessive catecholamine production, including the ability to counterbalance the adverse effects of SNS on cardiovascular system. The paper also presents the central results of studies on HF patients and shows the correlation of the CST level with HF functional class and stage. In addition, particular attention is paid on the possibilities and potential benefits of assessing the CST in addition to conventional management of patients hospitalized due to acute decompensated heart failure.
About the Authors
Yu. V. MeshcheryakovSamara State Medical University; National Medical Research Center for Therapy and Preventive Medicine; GMS clinic
Russian Federation
Samara, Moscow
Competing Interests:
Конфликт интересов отсутствует.
I. V. Gubareva
Samara State Medical University
Russian Federation
Samara
Competing Interests:
Конфликт интересов отсутствует.
E. Yu. Gubareva
Russian Federation
Samara
Competing Interests:
Конфликт интересов отсутствует.
A. Yu. Alekseeva
Russian Federation
Moscow
Competing Interests:
Конфликт интересов отсутствует.
References
1. Lippi G, Sanchis-Gomar F. Global epidemiology and future trends of heart failure. AME Med J. 2020;5(Ci):15. doi:10.21037/amj.2020.03.03.
2. Benjamin EJ, Muntner P, Alonso A, et al. Heart Disease and Stroke Statistics-2019 Update: A Report From the American Heart Association. Circulation. 2019;139(10):e56- 528. doi:10.1161/CIR.0000000000000659.
3. Maggioni AP, Dahlström U, Filippatos G, et al. EURObservational Research Programme: Regional differences and 1-year follow-up results of the Heart Failure Pilot Survey (ESCHF Pilot). Eur J Heart Fail. 2013;15(7):808-17. doi:10.1093/eurjhf/hft050.
4. Harjola VP, Follath F, Nieminen MS, et al. Characteristics, outcomes, and predictors ofmortality at 3 months and 1 year in patients hospitalized for acute heart failure. Eur J Heart Fail. 2010;12(3):239-48. doi:10.1093/eurjhf/hfq002.
5. Maggioni AP, Dahlström U, Filippatos G, et al. EURObservational research programme: The heart failure Pilot survey (ESC-HF Pilot). Eur J Heart Fail. 2010;12(10):1076-84. doi:10.1093/eurjhf/hfq154.
6. Elias A, Agbarieh R, Saliba W, et al. SOFA score and short-term mortality in acute decompensated heart failure. Sci Rep. 2020;10(1). doi:10.1038/s41598-020-77967-2.
7. Fomin IV. Chronic heart failure in Russian Federation: what do we know and what to do. Russian Journal of Cardiology. 2016;(8):7-13. (In Russ.) doi:10.15829/1560-4071-2016-8-7-13.
8. Bromage DI, Cannatà A, Rind IA, et al. The impact of COVID-19 on heart failure hospitalization and management: report from a Heart Failure Unit in London during the peak of the pandemic. Eur J Heart Fail. 2020;22(6):978-84. doi:10.1002/ejhf.1925.
9. Russian Society of Cardiology (RSC). 2020 Clinical practice guidelines for Chronic heart failure. Russian Journal of Cardiology. 2020;25(11):4083. (In Russ.) doi:10.15829/1560-4071-2020-4083.
10. Bencivenga L, Liccardo D, Napolitano C, et al. β-Adrenergic Receptor Signaling and Heart Failure: From Bench to Bedside. Heart Fail Clin. 2019;15(3):409-19. doi:10.1016/j.hfc.2019.02.009.
11. Triposkiadis F, Karayannis G, Giamouzis G, et al. The Sympathetic Nervous System in Heart Failure. Physiology, Pathophysiology, and Clinical Implications. J Am Coll Cardiol. 2009;54(19):1747-62. doi:10.1016/j.jacc.2009.05.015.
12. O’Meara E, Prescott MF, Claggett B, et al. Independent Prognostic Value of Serum Soluble ST2 Measurements in Patients With Heart Failure and a Reduced Ejection Fraction in the PARADIGM-HF Trial (Prospective Comparison of ARNI With ACEI to Determine Impact on Global Mortality and Morbidity in Heart Failure). Circ Heart Fail. 2018;11(5):e004446. doi:10.1161/CIRCHEARTFAILURE.117.004446.
13. Pocock SJ, Ariti CA, McMurray JJV, et al. Predicting survival in heart failure: A risk score based on 39 372 patients from 30 studies. Eur Heart J. 2013;34(19):1404-13. doi:10.1093/eurheartj/ehs337.
14. Benbarkat H, Addetia K, Eisenberg MJ, et al. Application of the Seattle heart failure model in patients >80 years of age enrolled in a tertiary care heart failure clinic. Am J Cardiol. 2012;110(11):1663-6. doi:10.1016/j.amjcard.2012.07.034.
15. Gaggin HK, Jr JLJ. Biochimica et Biophysica Acta Biomarkers and diagnostics in heart failure. BBA — Mol Basis Dis. 2013. doi:10.1016/j.bbadis.2012.12.014.
16. Ibrahim NE, Januzzi JL. Established and emerging roles of biomarkers in heart failure. Circ Res. 2018;123(5):614-29. doi:10.1161/CIRCRESAHA.118.312706.
17. Peng F, Chu S, Ding W, et al. The predictive value of plasma catestatin for all-cause and cardiac deaths in chronic heart failure patients. Peptides. 2016;86:112-7. doi:10.1016/j.peptides.2016.10.007.
18. Florea VG, Cohn JN. The autonomic nervous system and heart failure. Circ Res. 2014;114(11):1815-26. doi:10.1161/CIRCRESAHA.114.302589.
19. Kishi T. Heart failure as an autonomic nervous system dysfunction. J Cardiol. 2012; 59(2):117-22. doi:10.1016/j.jjcc.2011.12.006.
20. Swedberg K, Viquerat C, Rouleau JL, et al. Comparison of myocardial catecholamine balance in chronic congestive heart failure and in angina pectoris without failure. Am J Cardiol. 1984;54(7):783-6. doi:10.1016/S0002-9149(84)80208-8.
21. Viquerat CE, Daly P, Swedberg K, et al. Endogenous catecholamine levels in chronic heart failure. Relation to the severity of hemodynamic abnormalities. Am J Med. 1985;78(3):455-60. doi:10.1016/0002-9343(85)90338-9.
22. Kaye DM, Lambert GW, Lefkovits J, et al. Neurochemical evidence of cardiac sympathetic activation and increased central nervous system norepinephrine turnover in severe congestive heart failure. J Am Coll Cardiol. 1994;23(3):570-8. doi:10.1016/0735-1097(94)90738-2.
23. Aggarwal A, Esler MD, Lambert GW, et al. Norepinephrine turnover is increased in suprabulbar subcortical brain regions and is related to whole-body sympathetic activity in human heart failure. Circulation. 2002;105(9):1031-3. doi:10.1161/hc0902.105724.
24. Zucker IH, Schultz HD, Patel KP, et al. Regulation of central angiotensin type 1 receptors and sympathetic outflow in heart failure. Am J Physiol — Hear Circ Physiol. 2009;297(5). doi:10.1152/ajpheart.00073.2009.
25. Mäurer W, Tschada R, Manthey J, et al. Catecholamines in Patients with Heart Failure. Edited by W. Delius, E. Gerlach, H. Grobecker, and W. Kübler. Berlin, Heidelberg: Springer Berlin Heidelberg, 1981. doi:10.1007/978-3-642-68321-3_22.
26. Chidsey CA, Braunwald E, Morrow AG. Catecholamine excretion and cardiac stores of norepinephrine in congestive heart failure. Am J Med. 1965;39(3):442-51. doi:10.1016/0002-9343(65)90211-1.
27. Katsuumi G, Shimizu I, Yoshida Y, et al. Catecholamine-induced senescence of endothelial cells and bone marrow cells promotes cardiac dysfunction in mice. Int Heart J. 2018;59(4):837-44. doi:10.1536/ihj.17-313.
28. Santos JRU, Brofferio A, Viana B, Pacak K. Catecholamine-Induced Cardiomyopathy in Pheochromocytoma: How to Manage a Rare Complication in a Rare Disease? Horm Metab Res. 2019;51(7):458-69. doi:10.1055/a-0669-9556.
29. Mahata SK, O’Connor DT, Mahata M, et al. Novel autocrine feedback control of catecholamine release: A discrete chromogranin A fragment is a noncompetitive nicotinic cholinergic antagonist. J Clin Invest. 1997;100(6):1623-33. doi:10.1172/JCI119686.
30. Borovac JA, D’Amario D, Bozic J, Glavas D. Sympathetic nervous system activation and heart failure: Current state of evidence and the pathophysiology in the light of novel biomarkers. World J Cardiol. 2020;12(8):373-408. doi:10.4330/wjc.v12.i8.373.
31. Fung MM, Salem RM, Mehtani P, et al. Direct vasoactive effects of the chromogranin a (CHGA) peptide catestatin in humans in vivo. Clin Exp Hypertens. 2010;32(5):278-87. doi:10.3109/10641960903265246.
32. Kennedy BP, Mahata SK, O’Connor DT, Ziegler MG. Mechanism of cardiovascular actions of the chromogranin A fragment catestatin in vivo. Peptides. 1998;19(7):1241-8. doi:10.1016/s0196-9781(98)00086-2.
33. Troger J, Theurl M, Kirchmair R, et al. Granin-derived peptides. Prog Neurobiol. 2017;154:37-61. doi:10.1016/j.pneurobio.2017.04.003.
34. Mahapatra NR, Mahata M, Mahata SK, O’Connor DT. The chromogranin A fragment catestatin: Specificity, potency and mechanism to inhibit exocytotic secretion of multiple catecholamine storage vesicle co-transmitters. J Hypertens. 2006;24(5):895-904. doi:10.1097/01.hjh.0000222760.99852.e0.
35. Liu R, Sun NL, Yang SN, Guo JQ. Catestatin could ameliorate proliferating changes of target organs in spontaneously hypertensive rats. Chin Med J (Engl). 2013;126(11):2157- 62. doi:10.3760/cma.j.issn.0366-6999.20120757.
36. Alam MJ, Gupta R, Mahapatra NR, Goswami SK. Catestatin reverses the hypertrophic effects of norepinephrine in H9c2 cardiac myoblasts by modulating the adrenergic signaling. Mol Cell Biochem. 2020;464(1-2):205-19. doi:10.1007/s11010-019-03661-1.
37. Angelone T, Quintieri AM, Pasqua T, et al. Phosphodiesterase type-2 and NO-dependent S-nitrosylation mediate the cardioinhibition of the antihypertensive catestatin. Am J Physiol — Hear Circ Physiol. 2012;302(2). doi:10.1152/ajpheart.00491.2011.
38. Wang D, Liu T, Shi S, et al. Chronic Administration of Catestatin Improves Autonomic Function and Exerts Cardioprotective Effects in Myocardial Infarction Rats. J Cardiovasc Pharmacol Ther. 2016;21(6):526-35. doi:10.1177/1074248416628676.
39. Dev NB, Mir SA, Gayen JR, et al. Cardiac electrical activity in a genomically “humanized” chromogranin A monogenic mouse model with hyperadrenergic hypertension. J Cardiovasc Transl Res. 2014;7(5):483-93. doi:10.1007/s12265-014-9563-7.
40. Pei Z, Ma D, Ji L, et al. Usefulness of catestatin to predict malignant arrhythmia in patients with acute myocardial infarction. Peptides. 2014;55:131-5. doi:10.1016/j.peptides.2014.02.016.
41. Zhu D, Wang F, Yu H, et al. Catestatin is useful in detecting patients with stage B heart failure. Biomarkers. 2011;16(8):691-7. doi:10.3109/1354750X.2011.629058.
42. Liu L, Ding W, Li R, et al. Plasma levels and diagnostic value of catestatin in patients with heart failure. Peptides. 2013;46:20-5. doi:10.1016/j.peptides.2013.05.003.
43. Woowiec L, Rogowicz D, Banach J, et al. Catestatin as a New Prognostic Marker in Stable Patients with Heart Failure with Reduced Ejection Fraction in Two-Year FollowUp. Dis Markers. 2020;2020. doi:10.1155/2020/8847211.
44. Borovac JA, Glavas D, Susilovic Grabovac Z, et al. Catestatin in Acutely Decompensated Heart Failure Patients: Insights from the CATSTAT-HF Study. J Clin Med. 2019;8(8):1132. doi:10.3390/jcm8081132.
Review
For citations:
Meshcheryakov Yu.V., Gubareva I.V., Gubareva E.Yu., Alekseeva A.Yu. Role of catestatin in development and decompensation of heart failure: a literature review. Russian Journal of Cardiology. 2021;26(3S):4492. (In Russ.) https://doi.org/10.15829/1560-4071-2021-4492