Preview

Russian Journal of Cardiology

Advanced search

Role of the cardiac extracellular matrix in the onset and progression of heart failure

https://doi.org/10.15829/1560-4071-2021-4362

Abstract

Any cardiovascular disease leads to heart failure (HF) — a complex clinical syndrome, the course of which is probably specified by the influence of cardiovascular factors on cardiac extracellular matrix (ECM).

The presented literature data indicate that the cardiac ECM is an important pathophysiological link in the onset and progression of HF. The morphological and electrical remodeling negatively affects the systolic and diastolic functions of the heart. Impaired myocardial blood delivery, cellular maladaptation, atrial and ventricular arrhythmias are additional mechanisms of the influence of myocardial fibrosis on HF course.

Understanding this role of ECM and the development of algorithms for verifying the individual status of ECM in cardiovascular patients can provide additional data on the course of HF, help to assess the risk of adverse cardiovascular events and effectively control the ongoing pharmacological and non-drug therapy.

About the Authors

N. N. Ilov
Astrakhan State Medical University; Federal Center for Cardiovascular Surgery
Russian Federation

Astrakhan


Competing Interests:

not



K. Sh. Arnaudova
Astrakhan State Medical University
Russian Federation

Astrakhan


Competing Interests:

not



A. A. Nechepurenko
Federal Center for Cardiovascular Surgery
Russian Federation

Astrakhan


Competing Interests:

not



A. L. Yasenyavskaya
Astrakhan State Medical University
Russian Federation

Astrakhan


Competing Interests:

not



O. A. Bashkina
Astrakhan State Medical University
Russian Federation

Astrakhan


Competing Interests:

not



M. A. Samotrueva
Astrakhan State Medical University
Russian Federation

Astrakhan


Competing Interests:

not



References

1. Li L, Zhao Q, Kong W. Extracellular matrix remodeling and cardiac fibrosis. Matrix Biol. 2018;68-69:490-506. doi:10.1016/j.matbio.2018.01.013.

2. Putyatina A, Kim L. Cardiac extracellular matrix and postinfarction reparative fibrosis (Part 1). Vestn North Fed Univ Ser “Medical Biol Sci”. 2016;4:54-66. (In Russ.) doi:10.17238/issn2308-3174.2016.4.54

3. Christensen G, Herum KM, Lunde IG. Sweet, yet underappreciated: Proteoglycans and extracellular matrix remodeling in heart disease. Matrix Biol. 2019;75-76:286-99. doi:10.1016/j.matbio.2018.01.001.

4. Caulfield JB, Janicki JS. Structure and function of myocardial fibrillar collagen. Technol Heal Care. 1997;5:95-113. doi:10.3233/THC-1997-51-209.

5. Ott HC, Matthiesen TS, Goh SK, et al. Perfusion-decellularized matrix: Using nature's platform to engineer a bioartificial heart. Nat Med. 2008;14:213-21. doi:10.1038/nm1684.

6. Burchfield JS, Xie M, Hill JA. Pathological Ventricular Remodeling. Circulation. 2013;128:388-400. doi:10.1161/CIRCULATIONAHA.113.001878.

7. DeLeon-Pennell KY, Barker TH, Lindsey ML. Fibroblasts: The arbiters of extracellular matrix remodeling. Matrix Biol. 2020;91-92:1-7 doi:10.1016/j.matbio.2020.05.006.

8. Takawale A, Zhang P, Patel VB, et al. Tissue Inhibitor of Matrix Metalloproteinase-1 Promotes Myocardial Fibrosis by Mediating CD63-Integrin 01 Interaction. Hypertension. 2017;69:1092-103. doi:10.1161/HYPERTENSIONAHA.117.09045.

9. McDonald LT, Zile MR, Zhang Y, et al. Increased macrophage-derived SPARC precedes collagen deposition in myocardial fibrosis. Am J Physiol Circ Physiol. 2018;315:H92-100. doi:10.1152/ajpheart.00719.2017.

10. Gyongyosi M, Winkler J, Ramos I, et al. Myocardial fibrosis: biomedical research from bench to bedside. Eur J Heart Fail. 2017;19:177-91. doi:10.1002/ejhf.696.

11. Cunningham JW, Claggett BL, O'Meara E, et al. Effect of Sacubitril/Valsartan on Biomarkers of Extracellular Matrix Regulation in Patients With HFpEF. J Am Coll Cardiol. 2020;76:503-14. doi:10.1016/j.jacc.2020.05.072.

12. Zile MR, O'Meara E, Claggett B, et al. Effects of Sacubitril/Valsartan on Biomarkers of Extracellular Matrix Regulation in Patients With HFrEF. J Am Coll Cardiol. 2019;73:795-806. doi:10.1016/j.jacc.2018.11.042.

13. Masarone D, Limongelli G, Rubino M, et al. Management of Arrhythmias in Heart Failure. J Cardiovasc Dev Dis. 2017;4(1):3. doi:10.3390/jcdd4010003.

14. Mareev VY, Fomin OV, Ageev FT, et al. Russian heart failure society, Russian society of cardiology. Russian scientific medical society of internal medicine guidelines for heart failure: Chronic (CHF) and acute decompensated (ADHF). Diagnosis, prevention and treatment. Kardiologiya. 2018;58:8-164. (In Russ.) doi:10.18087/cardio.2475.

15. Wong CX, Brown A, Lau DH, et al. Epidemiology of Sudden Cardiac Death: Global and Regional Perspectives. Hear Lung Circ. 2019;28:6-14. doi:10.1016/j.hlc.2018.08.026.

16. Osmancik P, Louckova A. Biomarkers of apoptosis, inflammation, and cardiac extracellular matrix remodelling in the prognosis of heart failure. Kardiol Pol. 2016:295-305. doi:10.5603/KP.a2016.0154.

17. Graham HK, Horn M, Trafford AW. Extracellular matrix profiles in the progression to heart failure. Acta Physiol 2008;194:3-21. doi:10.1111/j.1748-1716.2008.01881.x.

18. Farwell D. How many people with heart failure are appropriate for biventricular resynchronization? Eur Heart J. 2000;21:1246-50. doi:10.1053/euhj.1999.1985.

19. Kass D. Ventricular remodelling: chamber dyssynchronyand effects of cardiac resynchronization. Eur Hear J Suppl. 2003;5:54-63. doi:10.1016/S1520-765X(03)80009-3.

20. Moreo A, Ambrosio G, De Chiara B, et al. Influence of Myocardial Fibrosis on Left Ventricular Diastolic Function. Circ Cardiovasc Imaging 2009;2:437-43. doi: 10.1161/CIRCIMAGING.108.838367.

21. Gonzalez A, Schelbert EB, Dlez J, Butler J. Myocardial Interstitial Fibrosis in Heart Failure. J Am Coll Cardiol. 2018;71:1696-706. doi:10.1016/j.jacc.2018.02.021.

22. Bivona G, Bellia C, Lo Sasso B, et al. Short-term Changes in Gal 3 Circulating Levels After Acute Myocardial Infarction. Arch Med Res. 2016;47:521-5. doi:10.1016/j.arcmed.2016.12.009.

23. Dai Z, Aoki T, Fukumoto Y, Shimokawa H. Coronary perivascular fibrosis is associated with impairment of coronary blood flow in patients with non-ischemic heart failure. J Cardiol. 2012;60:416-21. doi:10.1016/j.jjcc.2012.06.009.

24. Taddei M, Giannoni E, Fiaschi T, Chiarugi P. Anoikis: an emerging hallmark in health and diseases. J Pathol. 2012;226:380-93. doi:10.1002/path.3000.

25. Olivetti G, Abbi R, Quaini F, et al. Apoptosis in the Failing Human Heart. N Engl J Med. 1997;336:1131-41. doi:10.1056/NEJM199704173361603.

26. Sabbah HN, Sharov VG. Apoptosis in heart failure. Prog Cardiovasc Dis. 1998;40:549-62. doi:10.1016/S0033-0620(98)80003-0.

27. Tereshchenko SN, Zhirov IV, Nasonova SN, et al. Pathophysiology of acute heart failure. What's new? Russ J Cardiol. 2016;(9):52-64. (In Russ.) doi:10.15829/1560-4071-2016-9-52-64.

28. Levine B, Kalman J, Mayer L, et al. Elevated Circulating Levels of Tumor Necrosis Factor in Severe Chronic Heart Failure. N Engl J Med. 1990;323:236-41. doi:10.1056/NEJM199007263230405.

29. Vasuk UA, Dudarenko OP, Uschuk EN, et al. “Cytokine” model of pathogenesis of chronic heart failure and the opportunities of new therapeutic strategy in decompensated patients. Rational Pharmacother. Cardiol. 2006;4:63-70. (In Russ.)

30. Wu C-K, Lee J-K, Chiang F-T, et al. Plasma levels of tumor necrosis factor-а and interleukin-6 are associated with diastolic heart failure through downregulation of sarcoplasmic reticulum Ca2+ ATPase. Crit Care Med. 2011;39:984-92. doi: 10.1097/CCM.0b013e31820a91b9.

31. Savvatis K, Muller I, Frohlich M, et al. Interleukin-6 receptor inhibition modulates the immune reaction and restores titin phosphorylation in experimental myocarditis. Basic Res Cardiol. 2014;109:449. doi:10.1007/s00395-014-0449-2.

32. Hu Y-F, Chen Y-J, Lin Y-J, Chen S-A. Inflammation and the pathogenesis of atrial fibrillation. Nat Rev Cardiol. 2015;12:230-43. doi:10.1038/nrcardio.2015.2.

33. Sandanger 0, Ranheim T, Vinge LE, et al. The NLRP3 inflammasome is up-regulated in cardiac fibroblasts and mediates myocardial ischaemia-reperfusion injury. Cardiovasc Res. 2013;99:164-74. doi:101093/cvr/cvt091.

34. Van Linthout S, Tschope C. Inflammation — Cause or Consequence of Heart Failure or Both? Curr Heart Fail Rep. 2017;14:251-65. doi:101007/s11897-017-0337-9.

35. Dzeshka MS, Lip GYH, Snezhitskiy V, Shantsila E. Cardiac Fibrosis in Patients With Atrial Fibrillation. J Am Coll Cardiol. 2015;66:943-59. doi:10.1016/j.jacc.2015.06.1313.

36. Dillon SM, Allessie MA, Ursell PC, Wit AL. Influences of anisotropic tissue structure on reentrant circuits in the epicardial border zone of subacute canine infarcts. Circ Res. 1988;63:182-206. doi:10.1161/01.RES.63.1.182.

37. Andrade J, Khairy P, Dobrev D, Nattel S. The Clinical Profile and Pathophysiology of Atrial Fibrillation. Circ Res. 2014;114:1453-68. doi:10.1161/CIRCRESAHA.114.303211.

38. Zhirov IV, Safronova NV, Osmolovskaya YF, Tereschenko SN. Prognostic value of atrial fibrillation in patients with heart failure and different left ventricular ejection fraction: results of the multicenter RIF-CHF register. Russian Journal of Cardiology. 2021;26(1):4200. (In Russ.) doi:10.15829/1560-4071-2021-4200.

39. Stavenchuk TV, Kosmachova ED, Shelestova IA, et al. Speckle tracking echocardiography as a predictor of heart rejection in patients after orthotopic cardiac transplantation. Kreat Kardiol. 2015;9(3):56-66. (In Russ.) doi:10.15275/kreatkard.2015.03.05.

40. Disertori M, Rigoni M, Pace N, et al. Myocardial Fibrosis Assessment by LGE Is a Powerful Predictor of Ventricular Tachyarrhythmias in Ischemic and Nonischemic LV9 Dysfunction: A Meta-Analysis. JACC Cardiovasc Imaging. 2016;9:1046-55. doi:10.1016/j.jcmg.2016.01.033.

41. Andreu D, Ortiz-Perez JT, Fernandez-Armenta J, et al. 3D delayed-enhanced magnetic resonance sequences improve conducting channel delineation prior to ventricular tachycardia ablation. Europace. 2015;17:938-45. doi:10.1093/europace/euu310.

42. Sharykin AS, Badtieva VA, Trunina II, Osmanov IM. Myocardial fibrosis — a new component of heart remodeling in athletes? Cardiovasc Ther Prev. 2019;18(6):126-35. (In Russ.) doi:10.15829/1728-8800-2019-6-126-135.

43. Dietrich C, Barr R, Farrokh A, et al. Strain Elastography — How To Do It? Ultrasound Int Open. 2017;3(4):E137-E149. doi:10.1055/s-0043-119412.

44. Nikiforov VS, Nikishchenkova IV. Modern Possibilities of Speckle Tracking Echocardiography in Clinical Practice. Rational pharmacotherapy in cardiology. 2017;13(2):248-55. (In Russ.) doi:10.20996/1819-6446-2017-13-2-248-255.

45. Adamo L, Perry A, Novak E, et al. Abnormal Global Longitudinal Strain Predicts Future Deterioration of Left Ventricular Function in Heart Failure Patients With a Recovered Left Ventricular Ejection Fraction. Circ Hear Fail. 2017;10. doi:10.1161/CIRCHEARTFAILURE116.003788.

46. Ferreira JM, Ferreira SM, Ferreira MJ, Falcao-Pires I. Circulating Biomarkers of Collagen Metabolism and Prognosis of Heart Failure with Reduced or Mid-Range Ejection Fraction. Curr Pharm Des. 2017;23. doi:10.2174/1381612823666170317124125.

47. Frantz S, Stork S, Michels K, et al. Tissue inhibitor of metalloproteinases levels in patients with chronic heart failure: An independent predictor of mortality. Eur J Heart Fail. 2008;10:388-95. doi:10.1016/j.ejheart.2008.02.015.

48. Stanciu AE. Cytokines in heart failure. Advances in Clinical Chemistry. 2019;93:63-113. doi:10.1016/bs.acc.2019.07.002.

49. Coromilas E, Que-Xu E-C, Moore D, et al. Dynamics and prognostic role of galectin-3 in patients with advanced heart failure, during left ventricular assist device support and following heart transplantation. BMC Cardiovasc Disord. 2016;16:138. doi:10.1186/s12872-016-0298-z.

50. McMurray JJ V, Packer M, Desai AS, et al. Dual angiotensin receptor and neprilysin inhibition as an alternative to angiotensin-converting enzyme inhibition in patients with chronic systolic heart failure: rationale for and design of the Prospective comparison of ARNI with ACEI to Determine Impact. Eur J Heart Fail. 2013;15:1062-73. doi :10.1093/eurjhf/hft052.


Supplementary files

Review

For citations:


Ilov N.N., Arnaudova K.Sh., Nechepurenko A.A., Yasenyavskaya A.L., Bashkina O.A., Samotrueva M.A. Role of the cardiac extracellular matrix in the onset and progression of heart failure. Russian Journal of Cardiology. 2021;26(2S):4362. (In Russ.) https://doi.org/10.15829/1560-4071-2021-4362

Views: 1393


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1560-4071 (Print)
ISSN 2618-7620 (Online)