Pulse pressure and cognitive impairment
https://doi.org/10.15829/1560-4071-2021-4317
Abstract
Elevated pulse pressure (PP) is the one of simplest and most accessible markers of vascular damage and increased arterial stiffness in hypertension (HTN). To date, an extensive body of evidence has been accumulated in terms of the PP effect on central nervous system (CNS), leading to neuronal damage and death, which contribute to the development and progression of cognitive impairment (CI). Elevated PP violate the blood-brain barrier, can intensify the production of reactive oxygen species in the CNS, lead to endothelial dysfunction, microbleeds and directly stimulate the amyloid beta creation, which is a substrate of Alzheimer’s disease. Due to the important role of increased PP in CI, an important aspect of antihypertensives’ effects is their impact on PP and the ability to reduce it. Among antihypertensives, a single-pill combination of amlodipine/indapamide sustained release deserves special attention, since it has a body of evidence for reducing PP and thereby improving cognitive functioning in patients with HTN, which in turn will improve their quality of life.
About the Authors
O. D. OstroumovaRussian Federation
Moscow
Competing Interests: not
A. I. Kochetkov
Russian Federation
Moscow
Competing Interests: not
T. M. Ostroumova
Russian Federation
Moscow
Competing Interests: not
References
1. Fisher TJ, Schwartz AC, Greenspan HN, et al. Dementia: A complex disease with multiple etiologies and multiple treatments. Int J Psychiatry Med. 2016;51(2):171-81. doi:10.1177/0091217416636579.
2. Silva RMFLD, Miranda CM, Liu T, et al. Atrial Fibrillation and Risk of Dementia: Epidemiology, Mechanisms, and Effect of Anticoagulation. Front Neurosci. 2019;13:18. doi:10.3389/fnins.2019.00018.
3. Iadecola C, Yaffe K, Biller J, et al.; American Heart Association Council on Hypertension; Council on Clinical Cardiology; Council on Cardiovascular Disease in the Young; Council on Cardiovascular and Stroke Nursing; Council on Quality of Care and Outcomes Research; and Stroke Council. Impact of Hypertension on Cognitive Function: A Scientific Statement From the American Heart Association. Hypertension. 2016;68(6):e67-e94. doi:10.1161/HYP.0000000000000053.
4. Williams B, Mancia G, Spiering W, et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur Heart J. 2018;39(33):3021-104. doi:10.1093/eurheartj/ehy339.
5. Kobalava ZD, Konradi AO, Nedogoda SV, et al. Arterial hypertension in adults. Clinical guidelines 2020. Russian Journal of Cardiology. 2020;25(3):3786. (In Russ.) doi:10.15829/1560-4071-2020-3-3786.
6. Elias MF, Wolf PA, D’Agostino RB, et al. Untreated blood pressure level is inversely related to cognitive functioning: the Framingham Study. Am J Epidemiol. 1993;138(6):353-64. doi:10.1093/oxfordjournals.aje.a116868.
7. Launer LJ, Masaki K, Petrovitch H, et al. The association between midlife blood pressure levels and late-life cognitive function. The Honolulu-Asia Aging Study. JAMA. 1995;274(23):1846-51. doi:10.1001/jama.1995.03530230032026.
8. Vicario А, Coca А, Gasecki D, et al.; on behalf of the ESH WG on Hypertension and Brain. Effects of antihypertensive treatment on cognitive decline. Scientific Newsletter. Update on Hypertension Management. 2019;20(73). https://www.eshonline.org/esh-content/uploads/2020/01/Newsletter-ESH-73_antihypertensive-treatment_rev3_OK.pdf.
9. Levin RA, Carnegie MH, Celermajer DS. Pulse Pressure: An Emerging Therapeutic Target for Dementia. Front Neurosci. 2020;14:669. doi:10.3389/fnins.2020.00669.
10. Pinto E. Blood pressure and ageing. Postgrad Med J. 2007;83(976):109-14. doi:10.1136/pgmj.2006.048371.
11. Safar ME. Pulse pressure, arterial stiffness and wave reflections (augmentation index) as cardiovascular risk factors in hypertension. Ther Adv Cardiovasc Dis. 2008;2(1):13-24. doi:10.1177/1753944707086652.
12. Lee RM. Morphology of cerebral arteries. Pharmacol Ther. 1995;66(1):149-73. doi:10.1016/0163-7258(94)00071-a.
13. Ballabh P, Braun A, Nedergaard M. The blood-brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol Dis. 2004;16(1):1-13. doi:10.1016/j.nbd.2003.12.016.
14. Armulik A, Genove G, Mae M, et al. Pericytes regulate the blood-brain barrier. Nature. 2010;468(7323):557-61. doi:10.1038/nature09522.
15. Stone J, Johnstone DM, Mitrofanis J, et al. The mechanical cause of age-related dementia (Alzheimer’s disease): the brain is destroyed by the pulse. J Alzheimers Dis. 2015;44(2):355-73. doi:10.3233/JAD-141884.
16. Thorin-Trescases N, de Montgolfier O, Pincon A, et al. Impact of pulse pressure on cerebrovascular events leading to age-related cognitive decline. Am J Physiol Heart Circ Physiol. 2018;314(6):H1214-H1224. doi:10.1152/ajpheart.00637.2017.
17. Tarumi T, Ayaz Khan M, Liu J, et al. Cerebral hemodynamics in normal aging: central artery stiffness, wave reflection, and pressure pulsatility [published correction appears in J Cereb Blood Flow Metab. 2014 Jul;34(7):1255. Tseng, Benjamin M [corrected to Tseng, Benjamin Y]]. J Cereb Blood Flow Metab. 2014;34(6):971-8. doi:10.1038/jcbfm.2014.44.
18. Waldstein SR, Rice SC, Thayer JF, et al. Pulse pressure and pulse wave velocity are related to cognitive decline in the Baltimore Longitudinal Study of Aging. Hypertension. 2008;51(1):99-104. doi:10.1161/HYPERTENSIONAHA.107.093674.
19. Mitchell GF, van Buchem MA, Sigurdsson S, et al. Arterial stiffness, pressure and flow pulsatility and brain structure and function: the Age, Gene/Environment Susceptibility — Reykjavik study. Brain. 2011;134(Pt 11):3398-407. doi:10.1093/brain/awr253.
20. Meyer ML, Palta P, Tanaka H, et al. Association of Central Arterial Stiffness and Pressure Pulsatility with Mild Cognitive Impairment and Dementia: The Atherosclerosis Risk in Communities Study-Neurocognitive Study (ARIC-NCS). J Alzheimers Dis. 2017;57(1):195-204. doi:10.3233/JAD-161041.
21. Chiesa ST, Masi S, Shipley MJ, et al. Carotid artery wave intensity in mid- to late-life predicts cognitive decline: the Whitehall II study. Eur Heart J. 2019;40(28):2300-9. doi:10.1093/eurheartj/ehz189.
22. de Montgolfier O, Pincon A, Pouliot P, et al. High Systolic Blood Pressure Induces Cerebral Microvascular Endothelial Dysfunction, Neurovascular Unit Damage, and Cognitive Decline in Mice. Hypertension. 2019;73(1):217-28. doi:10.1161/HYPERTENSIONAHA.118.12048.
23. Gao J, Huang T, Zhou LJ, et al. Preconditioning effects of physiological cyclic stretch on pathologically mechanical stretch-induced alveolar epithelial cell apoptosis and barrier dysfunction. Biochem Biophys Res Commun. 2014;448(3):342-8. doi:10.1016/j.bbrc.2014.03.063.
24. Jufri NF, Mohamedali A, Avolio A, et al. Mechanical stretch: physiological and pathological implications for human vascular endothelial cells. Vasc Cell. 2015;7:8. doi:10.1186/s13221-015-0033-z.
25. Swardfager W, Lanctot K, Rothenburg L, et al. A meta-analysis of cytokines in Alzheimer’s disease. Biol Psychiatry. 2010;68(10):930-41. doi:10.1016/j.biopsych.2010.06.012.
26. Ju Hwang C, Choi DY, Park MH, et al. NF-kB as a Key Mediator of Brain Inflammation in Alzheimer’s Disease. CNS Neurol Disord Drug Targets. 2019;18(1):3-10. doi:10.2174/1871527316666170807130011.
27. Gangoda SVS, Avadhanam B, Jufri NF, et al. Pulsatile stretch as a novel modulator of amyloid precursor protein processing and associated inflammatory markers in human cerebral endothelial cells. Sci Rep. 2018;8(1):1689. doi:10.1038/s41598-018-20117-6.
28. Wang BW, Chang H, Lin S, et al. Induction of matrix metalloproteinases-14 and -2 by cyclical mechanical stretch is mediated by tumor necrosis factor-alpha in cultured human umbilical vein endothelial cells. Cardiovasc Res. 2003;59(2):460-9. doi:10.1016/s0008-6363(03)00428-0.
29. Jufri NF, Mohamedali A, Ahn SB, et al. Effects of acute and chronic biomechanical strain on human cerebral endothelial cells in altering their proteome profile. Current Proteomics. 2017;14(3):214-23. doi:10.2174/1570164614666170213141932.
30. Haft CR, de la Luz Sierra M, Barr VA, et al. Identification of a family of sorting nexin molecules and characterization of their association with receptors. Mol Cell Biol. 1998;18(12):7278-87. doi:10.1128/mcb.18.12.7278.
31. Zhao Y, Wang Y, Yang J, et al. Sorting nexin 12 interacts with BACE1 and regulates BACE1-mediated APP processing. Mol Neurodegener. 2012;7:30. doi:10.1186/1750-1326-7-30.
32. Adachi H, Tsujimoto M. FEEL-1, a novel scavenger receptor with in vitro bacteria-binding and angiogenesis-modulating activities. J Biol Chem. 2002;277(37):34264-70. doi:10.1074/jbc.M204277200.
33. Miranda S, Opazo C, Larrondo LF, et al. The role of oxidative stress in the toxicity induced by amyloid beta-peptide in Alzheimer’s disease. Prog Neurobiol. 2000;62(6):633-48. doi:10.1016/s0301-0082(00)00015-0.
34. Sagare AP, Bell RD, Zhao Z, et al. Pericyte loss influences Alzheimer-like neurodegeneration in mice. Nat Commun. 2013;4:2932. doi:10.1038/ncomms3932.
35. Robinson SR, Dang TN, Dringen R, et al. Hemin toxicity: a preventable source of brain damage following hemorrhagic stroke. Redox Rep. 2009;14(6):228-35. doi:10.1179/135100009X12525712409931.
36. Cullen KM, Kocsi Z, Stone J. Microvascular pathology in the aging human brain: evidence that senile plaques are sites of microhaemorrhages. Neurobiol Aging. 2006;27(12):1786-96. doi:10.1016/j.neurobiolaging.2005.10.016.
37. Cortes-Canteli M, Zamolodchikov D, Ahn HJ, et al. Fibrinogen and altered hemostasis in Alzheimer’s disease. J Alzheimers Dis. 2012;32(3):599-608. doi:10.3233/JAD-2012-120820.
38. van Sloten TT, Stehouwer CD. Carotid Stiffness: A Novel Cerebrovascular Disease Risk Factor. Pulse (Basel) 2016;4(1):24-7. doi:10.1159/000445354.
39. Mitchell GF. Effects of central arterial aging on the structure and function of the peripheral vasculature: implications for end-organ damage. J Appl Physiol 2008;105:1652-60. doi:10.1152/japplphysiol.90549.2008.
40. Rothwell PM. Limitations of the usual blood-pressure hypothesis and importance of variability, instability, and episodic hypertension. Lancet. 2010;375(9718):938-48. doi:10.1016/S0140-6736(10)60309-1.
41. Lee AT, Chan WC, Chiu HF, et al. Widened pulse pressure is a potential risk factor for significant cognitive impairment among community-dwelling Chinese younger old people. J Alzheimers Dis. 2013;35(4):687-96. doi:10.3233/JAD-122116.
42. Yasar S, Ko JY, Nothelle S, et al. Evaluation of the effect of systolic blood pressure and pulse pressure on cognitive function: the Women’s Health and Aging Study II. PLoS One. 2011;6(12):e27976. doi:10.1371/journal.pone.0027976.
43. Giordano N, Tikhonoff V, Palatini P, et al. Cognitive functions and cognitive reserve in relation to blood pressure components in a population-based cohort aged 53 to 94 years. Int J Hypertens. 2012;2012:274851. doi:10.1155/2012/274851.
44. McDade E, Sun Z, Lee CW, et al. The association between pulse pressure change and cognition in late life: Age and where you start matters. Alzheimers Dement (Amst). 2016;4:56-66. doi:10.1016/j.dadm.2016.03.008.
45. Riba-Llena I, Nafria C, Filomena J, et al. High daytime and nighttime ambulatory pulse pressure predict poor cognitive function and mild cognitive impairment in hypertensive individuals. J Cereb Blood Flow Metab. 2016;36(1):253-63. doi:10.1038/jcbfm.2015.90.
46. Riba I, Jarca CI, Mundet X, et al. Cognitive assessment protocol design in the ISSYS (Investigating Silent Strokes in hYpertensives: a magnetic resonance imaging Study). J Neurol Sci. 2012;322(1-2):79-81. doi:10.1016/j.jns.2012.06.015.
47. Kobalava ZD, Tolkacheva VV, Bagmanova NK, et al. Efficacy and tolerance of Arifam in patients with arterial hypertension over 55 years old: main results of the observational program ARBALET. Russian Journal of Cardiology. 2018;(12):64-74. (In Russ.) doi:10.15829/1560-4071-2018-12-64-74.
48. Zueva IB, Vanaeva KI, Sanez EL, et al. Effect of antihypertensive therapy on cognitive function in hypertensive patients with obesity. “Arterial’naya Gipertenziya” (“Arterial Hypertension”). 2012;18(4):325-33. (In Russ.) doi:10.18705/1607-419X-2012-18-4-325-333.
49. Ilov NN, Shvarts RN, Panova TN. Cognitive-mnestic functions in able-bodied aged patients with essential arterial hypertension in amlodipine treatment. Rational Pharmacotherapy in Cardiology. 2011;7(3):313-8. (In Russ.) doi:10.20996/1819-6446-2011-7-3-313-318.
50. Thibault O, Landfield PW. Increase in single L-type calcium channels in hippocampal neurons during aging. Science. 1996;272(5264):1017-20. doi:10.1126/science.272.5264.1017.
51. Thibault O, Gant JC, Landfield PW. Expansion of the calcium hypothesis of brain aging and Alzheimer’s disease: minding the store. Aging Cell. 2007;6(3):307-17. doi:10.1111/j.1474-9726.2007.00295.x.
52. Berridge MJ. Calcium signalling and Alzheimer’s disease. Neurochem Res. 2011;36(7):1149-56. doi:10.1007/s11064-010-0371-4
53. Lu M, Ma L, Wang X. Indapamide suppresses amyloid-в production in cellular models of alzheimer’s disease through regulating BACE1 activity. Int J Clin Exp Med. 2017;10(4):5922-30.
54. Chillon JM, Baumbach GL. Effects of indapamide, a thiazide-like diuretic, on structure of cerebral arterioles in hypertensive rats. Hypertension. 2004;43(5):1092-7. doi:10.1161/01.HYP.0000122874.21730.81.
55. Nishioku T, Takata F, Yamauchi A, et al. Protective action of indapamide, a thiazide-like diuretic, on ischemia-induced injury and barrier dysfunction in mouse brain microvascular endothelial cells. J Pharmacol Sci. 2007;103(3):323-7. doi:10.1254/jphs.sc0060222.
56. Chiu WC, Ho WC, Lin MH, et al. Angiotension receptor blockers reduce the risk of dementia. J Hypertens. 2014;32(4):938-47. doi:10.1097/HJH.0000000000000086.
Review
For citations:
Ostroumova O.D., Kochetkov A.I., Ostroumova T.M. Pulse pressure and cognitive impairment. Russian Journal of Cardiology. 2021;26(1):4317. (In Russ.) https://doi.org/10.15829/1560-4071-2021-4317